Show simple item record

Reactive Molecular Dynamic Simulations of Network Polymers: Generation, Characterization and Mechanical Properties.

dc.contributor.authorShankar, Chandrashekaren_US
dc.date.accessioned2009-05-15T15:11:13Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-05-15T15:11:13Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/62243
dc.description.abstractThe goal of this research was to gain a fundamental understanding of the properties of networks created by the ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) used in self-healing materials. To this end we used molecular simulation methods to generate realistic structures of DCPD networks, characterize their structures, and determine their mechanical properties. Density functional theory (DFT) calculations, complemented by structural information derived from molecular dynamics simulations were used to reconstruct experimental Raman spectra and differential scanning calorimetry (DSC) data. We performed coarse-grained simulations comparing networks generated via the ROMP reaction process and compared them to those generated via a RANDOM process, which led to the fundamental realization that the polymer topology has a unique influence on the network properties. We carried out fully atomistic simulations of DCPD using a novel algorithm for recreating ROMP reactions of DCPD molecules. Mechanical properties derived from these atomistic networks are in excellent agreement with those obtained from coarse-grained simulations in which interactions between nodes are subject to angular constraints. This comparison provides self-consistent validation of our simulation results and helps to identify the level of detail necessary for the coarse-grained interaction model. Simulations suggest networks can classified into three stages: fluid-like, rubber-like or glass-like delineated by two thresholds in degree of reaction α: The onset of finite magnitudes for the Young’s modulus, αY, and the departure of the Poisson ration from 0.5, αP. In each stage the polymer exhibits a different predominant mechanical response to deformation. At low α < αY it flows. At αY < α < αP the response is entropic with no change in internal energy. At α > αP the response is enthalpic change in internal energy. We developed graph theory-based network characterizations to correlate between network topology and the simulated mechanical properties. 1) Eigenvector centrality 2) Graph fractal dimension 3) Fiedler partitioning and 4) Cross-link fraction (Q3+Q4). Of these quantities, the Fiedler partition is the best characteristic for the prediction of Young’s Modulus. The new computational tools developed in this research are of great fundamental and practical interest.en_US
dc.format.extent13360593 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectNetworken_US
dc.subjectPercolationen_US
dc.titleReactive Molecular Dynamic Simulations of Network Polymers: Generation, Characterization and Mechanical Properties.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMaterials Science and Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberKieffer, Johnen_US
dc.contributor.committeememberFalk, Michael L.en_US
dc.contributor.committeememberGeva, Eitanen_US
dc.contributor.committeememberLahann, Joergen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/62243/1/cshankar_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.