Show simple item record

Self-organized Nanoscale Patterning under Ion Beam Irradiation.

dc.contributor.authorWei, Qiangminen_US
dc.date.accessioned2009-05-15T15:14:34Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-05-15T15:14:34Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/62288
dc.description.abstractEnergetic ion bombardment can lead to the development of complex and diverse nanostructures on or near the material surface. One of interests in these structures is the formation of highly ordered patterns whose optical, electronic and magnetic properties are different from bulk materials and might have important technological applications. In this work, the ordered pattern formation in a broad range of materials was fabricated and investigated, including one-dimension periodic arrays of nanoparticles and ripples, two-dimensional patterns of highly ordered Ga droplet on the surface of GaAs, ordered nanocrystals on argon ion sputtered polymer film, hexagonally ordered nanoholes on the surface of Ge, and three-dimensional void/bubble formation inside materials. In addition, angular and curvature dependence of sputtering yield was also discussed. Special emphasis was placed on the fundamental understanding of ordered pattern formation under irradiation. Sputtering, redeposition, viscous flow, and surface diffusion which are responsible for ordered pattern formation are investigated through a combination of modeling and in situ and ex-situ observations. It was proposed that a common feature of mechanism responsible for pattern formation during ion irradiation is the anisotropic movement of species. This anisotropy movement can take place either on the surface of materials driven by the off-normal angle ion bombardment, for example ripple and ordered droplet formation, or inside materials driven by crystalline structure, such as void/bubble lattice formation. Other mechanisms, such as redeposition, viscous flow and surface diffusion can enhance or weaken the tendency of the pattern formation and give rise to the change of initial patterns with a long time limit, such as ordered hole formation on Ge surface. It was suggested that dynamic balance between anisotropic mass loss and gain can lead to the formation of highly ordered Ga droplet on the ion irradiated GaAs surface. With computer modeling, it was found that nonlinear effects for long time limit determine the hexagonally ordered, honeycomb-like structure of nano-scale holes induced by the ion beam bombardment on the Ge surface.en_US
dc.format.extent19617396 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectIon Beam Irraidationen_US
dc.titleSelf-organized Nanoscale Patterning under Ion Beam Irradiation.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMaterials Science and Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberWang, Lu-Minen_US
dc.contributor.committeememberLu, Weien_US
dc.contributor.committeememberPan, Xiaoqingen_US
dc.contributor.committeememberVan Der Ven, Antonen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/62288/1/qwei_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.