Show simple item record

Manufacturing System Variation Reduction Through Feed-Forward Control Considering Model Uncertainties.

dc.contributor.authorZhong, Jingen_US
dc.date.accessioned2009-05-15T15:18:51Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-05-15T15:18:51Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/62349
dc.description.abstractToday’s manufacturing industry is facing greater challenges than ever. To meet the higher and stricter challenges and demands, advanced manufacturing paradigms such as flexible manufacturing and reconfigurable manufacturing are widely used by manufacturers to perform complex manufacturing operations. Complex manufacturing is characterized by a diverse product mix, various sources of disturbances, a large number of operations and stations, and the inevitable complex interactions among stations, and between processes and products. This dissertation deals with modeling and process control to enhance product quality produced in complex manufacturing processes, including multistage manufacturing processes. The successful deployment of these techniques will lead to new levels of quality and robustness in manufacturing. Fundamental research has been conducted on active control of multistage manufacturing systems. This includes three topics related to control and modeling, which are: o Development of feed-forward controllers for manufacturing processes: Feed-forward controllers allow deviation compensation on a part-by-part basis using programmable tools. The control actions take into consideration not only process mathematical models and in-line measurements, but also the modeling and measurement uncertainties. Simulation results show that the proposed control approach is effective in variation reduction, both for a data-driven model and for an engineering-driven model. o Stream of Variation (SoV) Modeling with consideration of model uncertainties: To model the variation propagation and model changes in Multistage Manufacturing Processes (MMPs) for control purposes, it is necessary for the model to capture the impact of model uncertainties that are due to the errors of incoming parts or errors arising from other process variations. This development of a modeling method considering model uncertainties enables the development of the above-mentioned control strategy. o Model and controllability validation in real multistage manufacturing processes: As the theoretical basis for model-based predictive controls and many other applications in multistage manufacturing, the SoV model is validated in real manufacturing processes. At the same time, the controllability in MMPs also needs to be validated in real processes. The results of experiments provide a solid theoretical basis in the SoV theory and its applications including active control.en_US
dc.format.extent848525 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectVariation Reductionen_US
dc.subjectModel Uncertaintyen_US
dc.subjectManufacturing System Controlen_US
dc.titleManufacturing System Variation Reduction Through Feed-Forward Control Considering Model Uncertainties.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineIndustrial & Operations Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberJin, Jionghuaen_US
dc.contributor.committeememberShi, Jianjunen_US
dc.contributor.committeememberHerrin, Gary D.en_US
dc.contributor.committeememberHu, Shixin Jacken_US
dc.subject.hlbsecondlevelIndustrial and Operations Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/62349/1/jzhong_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.