Show simple item record

Crosstalk Noise Analysis for Nano-Meter VLSI Circuits.

dc.contributor.authorGandikota, Ravikishoreen_US
dc.date.accessioned2010-01-07T16:25:39Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-01-07T16:25:39Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/64663
dc.description.abstractScaling of device dimensions into the nanometer process technology has led to a considerable reduction in the gate delays. However, interconnect delays have not scaled in proportion to gate delays, and global-interconnect delays account for a major portion of the total circuit delay. Also, due to process-technology scaling, the spacing between adjacent interconnect wires keeps shrinking, which leads to an increase in the amount of coupling capacitance between interconnect wires. Hence, coupling noise has become an important issue which must be modeled while performing timing verification for VLSI chips. As delay noise strongly depends on the skew between aggressor-victim input transitions, it is not possible to a priori identify the victim-input transition that results in the worst-case delay noise. This thesis presents an analytical result that would obviate the need to search for the worst-case victim-input transition and simplify the aggressor-victim alignment problem significantly. We also propose a heuristic approach to compute the worst-case aggressor alignment that maximizes the victim receiver-output arrival time with current-source driver models. We develop algorithms to compute the set of top-k aggressors in the circuit, which could be fixed to reduce the delay noise of the circuit. Process variations cause variability in the aggressor-victim alignment which leads to variability in the delay noise. This variability is modeled by deriving closed-form expressions of the mean, the standard deviation and the correlations of the delay-noise distribution. We also propose an approach to estimate the confidence bounds on the path delay-noise distribution. Finally, we show that the interconnect corners obtained without incorporating the effects of coupling noise could lead to significant errors, and propose an approach to compute the interconnect corners considering the impact of coupling noise.en_US
dc.format.extent2293244 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectCrosstalk Noiseen_US
dc.subjectSignal Integrityen_US
dc.subjectNoise Analysisen_US
dc.subjectCapacitive Couplingen_US
dc.subjectDelay Noiseen_US
dc.titleCrosstalk Noise Analysis for Nano-Meter VLSI Circuits.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBlaauw, Daviden_US
dc.contributor.committeememberCohn, Amy Ellenen_US
dc.contributor.committeememberMarkov, Igor L.en_US
dc.contributor.committeememberSylvester, Dennis Michaelen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/64663/1/gravkis_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.