Show simple item record

Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks

dc.contributor.authorZehr, E. Paulen_US
dc.contributor.authorBalter, Jaclyn E.en_US
dc.contributor.authorFerris, Daniel P.en_US
dc.contributor.authorHundza, Sandra R.en_US
dc.contributor.authorLoadman, Pamela M.en_US
dc.contributor.authorStoloff, Rebecca H.en_US
dc.date.accessioned2010-04-01T14:42:29Z
dc.date.available2010-04-01T14:42:29Z
dc.date.issued2007-07-01en_US
dc.identifier.citationZehr, E. Paul; Balter, Jaclyn E.; Ferris, Daniel P.; Hundza, Sandra R.; Loadman, Pamela M.; Stoloff, Rebecca H. (2007). "Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks." The Journal of Physiology 582(1): 209-227. <http://hdl.handle.net/2027.42/65152>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65152
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17463036&dopt=citationen_US
dc.format.extent747489 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 The Authors. Journal compilation © 2007 The Physiological Societyen_US
dc.titleNeural regulation of rhythmic arm and leg movement is conserved across human locomotor tasksen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumHuman Neuromechanics Laboratory, University of  Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherRehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canadaen_US
dc.contributor.affiliationotherHuman Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canadaen_US
dc.contributor.affiliationotherCentre for Biomedical Research, University of Victoria, Victoria, BC, Canadaen_US
dc.identifier.pmid17463036en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65152/1/jphysiol.2007.133843.pdf
dc.identifier.doi10.1113/jphysiol.2007.133843en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceBaken BC, Dietz V & Duysens J ( 2005 ). Phase-dependent modulation of short latency cutaneous reflexes during walking in man. Brain Res 1031, 268 – 275.en_US
dc.identifier.citedreferenceBalter JE & Zehr EP ( 2007 ). Neural coupling between the arms and legs during rhythmic locomotor-like cycling movement. J Neurophysiol 97, 1809 – 1818.en_US
dc.identifier.citedreferenceBarbeau H & Rossignol S ( 1994 ). Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol 7, 517 – 524.en_US
dc.identifier.citedreferenceBrooke JD, Cheng J, Collins DF, McIlroy WE, Misiaszek JE & Staines WR ( 1997 ). Sensori-sensory afferent conditioning with leg movement: gain control in spinal reflex and ascending paths. Prog Neurobiol 51, 393 – 421.en_US
dc.identifier.citedreferenceBurke RE ( 1999 ). The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp Brain Res 128, 263 – 277.en_US
dc.identifier.citedreferenceBurke RE, Degtyarenko AM & Simon ES ( 2001 ). Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J Neurophysiol 86, 447 – 462.en_US
dc.identifier.citedreferenceCarroll TJ, Zehr EP & Collins DF ( 2005 ). Modulation of cutaneous reflexes in human upper limb muscles during arm cycling is independent of activity in the contralateral arm. Exp Brain Res 161, 133 – 144.en_US
dc.identifier.citedreferenceCohen J ( 1992 ). A power primer. Psyc Bull 112, 155 – 159.en_US
dc.identifier.citedreferenceDavis BL & Vaughan CL ( 1993 ). Signals during gait: use of multivariate statistics. J Electromyogr Kinesiol 3, 51 – 60.en_US
dc.identifier.citedreferenceDietz V ( 1997 ). Locomotor recovery after spinal cord injury. Trends Neurosci 20, 346 – 347.en_US
dc.identifier.citedreferenceDietz V ( 2002 a ). Do human bipeds use quadrupedal coordination? Trends Neurosci 25, 462 – 467.en_US
dc.identifier.citedreferenceDietz V ( 2002 b ). Proprioception and locomotor disorders. Nat Rev Neurosci 3, 781 – 790.en_US
dc.identifier.citedreferenceDietz V ( 2003 ). Spinal cord pattern generators for locomotion. Clin Neurophysiol 114, 1379 – 1389.en_US
dc.identifier.citedreferenceDietz V, Colombo G & Jensen L ( 1994 ). Locomotor activity in spinal man. Lancet 344, 1260 – 1263.en_US
dc.identifier.citedreferenceDietz V & Duysens J ( 2000 ). Significance of load receptor input during locomotion: a review. Gait Posture 11, 102 – 110.en_US
dc.identifier.citedreferenceDietz V, Fouad K & Bastiaanse CM ( 2001 ). Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci 14, 1906 – 1914.en_US
dc.identifier.citedreferenceDrew T & Rossignol S ( 1987 ). A kinematic and electromyographic study of cutaneous reflexes evoked from the forelimb of unrestrained walking cats. J Neurophysiol 57, 1160 – 1184.en_US
dc.identifier.citedreferenceDuysens J ( 1998 ). From cat to man: basic aspects of locomotion relevant to motor rehabilitation of SCI. Neurorehabilitation 10, 107 – 118.en_US
dc.identifier.citedreferenceDuysens J, Clarac F & Cruse H ( 2000 ). Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80, 83 – 133.en_US
dc.identifier.citedreferenceDuysens J & Loeb GE ( 1980 ). Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats. J Neurophysiol 44, 1024 – 1037.en_US
dc.identifier.citedreferenceDuysens J & Tax T ( 1994 ). Interlimb reflexes during gait in cat and human. In Interlimb Coordination: Neural, Dynamical, and Cognitive Constraints, ed. Swinnen SP, Heuer H, Massion J & Casaer P, pp. 97 – 126. Academic Press, Inc., San Diego, Calif, USA.en_US
dc.identifier.citedreferenceDuysens J, Tax AA, Murrer L & Dietz V ( 1996 ). Backward and forward walking use different patterns of phase-dependent modulation of cutaneous reflexes in humans. J Neurophysiol 76, 301 – 310.en_US
dc.identifier.citedreferenceDuysens J & Van de Crommert HW ( 1998 ). Neural control of locomotion; The central pattern generator from cats to humans. Gait Posture 7, 131 – 141.en_US
dc.identifier.citedreferenceFerris DP, Gordon KE, Beres-Jones JA & Harkema SJ ( 2004 ). Muscle activation during unilateral stepping occurs in the nonstepping limb of humans with clinically complete spinal cord injury. Spinal Cord 42, 14 – 23.en_US
dc.identifier.citedreferenceFerris DP, Huang HJ & Kao PC ( 2006 ). Moving the arms to activate the legs. Exerc Sport Sci Rev 34, 133 – 120.en_US
dc.identifier.citedreferenceForssberg H ( 1979 ). Stumbling corrective reaction: a phasedependent compensatory reaction during locomotion. J Neurophysiol 42, 936 – 953.en_US
dc.identifier.citedreferenceFrigon A, Collins DF & Zehr EP ( 2004 ). Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning. J Neurophysiol 91, 1516 – 1523.en_US
dc.identifier.citedreferenceGlass GV & Hopkins KD ( 1984 ). Inferences among correlation coefficients. In Statistical methods in Education and Psychology, pp. 300 – 323. Allyn & Bacon, Needham Heights, MA, USA.en_US
dc.identifier.citedreferenceGrasso R, Bianchi L & Lacquaniti F ( 1998 ). Motor patterns for human gait: backward versus forward locomotion. J Neurophysiol 80, 1868 – 1885.en_US
dc.identifier.citedreferenceGrasso R, Zago M & Lacquaniti F ( 2000 ). Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture. J Neurophysiol 83, 288 – 300.en_US
dc.identifier.citedreferenceGrillner S ( 1981 ). Control of locomotion in bipeds, tetrapods, and fish. In Handbook of Physiology, section 1, The Nervous System, vol. II, Motor Control, ed. Brookhart JM, Mountcastle VB, Brooks VB & Geiger SR, pp. 1179 – 1236. American Physiological Society, Bethesda, MD, USA.en_US
dc.identifier.citedreferenceHaridas C & Zehr EP ( 2003 ). Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking. J Neurophysiol 90, 2850 – 2861.en_US
dc.identifier.citedreferenceHaridas C, Zehr EP & Misiaszek JE ( 2005 ). Postural uncertainty leads to dynamic control of cutaneous reflexes from the foot during human walking. Brain Res 1062, 48 – 62.en_US
dc.identifier.citedreferenceHarkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH & Edgerton VR ( 1997 ). Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77, 797 – 811.en_US
dc.identifier.citedreferenceHooper SL & DiCaprio RA ( 2004 ). Crustacean motor pattern generator networks. Neurosignals 13, 50 – 69.en_US
dc.identifier.citedreferenceHuang HJ & Ferris DP ( 2004 ). Neural coupling between upper and lower limbs during recumbent stepping. J Appl Physiol 97, 1299 – 1308.en_US
dc.identifier.citedreferenceHundza S & Zehr E ( 2006 ). Cutaneous reflexes during rhythmic arm cycling are insensitive to asymmetrical changes in crank length. Exp Brain Res 168, 165 – 177.en_US
dc.identifier.citedreferenceIvanenko YP, Cappellini G, Dominici N, Poppele RE & Lacquaniti F ( 2005 ). Coordination of locomotion with voluntary movements in humans. J Neurosci 25, 7238 – 7253.en_US
dc.identifier.citedreferenceIvanenko YP, Grasso R, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V & Lacquaniti F ( 2003 ). Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J Neurophysiol 90, 3555 – 3565.en_US
dc.identifier.citedreferenceIvanenko YP, Poppele RE & Lacquaniti F ( 2004 ). Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556, 267 – 282.en_US
dc.identifier.citedreferenceJahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M & Brandt T ( 2004 ). Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22, 1722 – 1731.en_US
dc.identifier.citedreferenceKao PC & Ferris DP ( 2005 ). The effect of movement frequency on interlimb coupling during recumbent stepping. Motor Control 9, 144 – 163.en_US
dc.identifier.citedreferenceKennedy PM, Carlsen AN, Inglis JT, Chow R, Franks IM & Chua R ( 2003 ). Relative contributions of visual and vestibular information on the trajectory of human gait. Exp Brain Res 153, 113 – 117.en_US
dc.identifier.citedreferenceKomiyama T, Zehr EP & Stein RB ( 2000 ). Absence of nerve-specificity in human cutaneous reflexes during standing. Exp Brain Res 133, 267 – 272.en_US
dc.identifier.citedreferenceKuo AD, Donelan JM & Ruina A ( 2005 ). Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc Sport Sci Rev 33, 88 – 97.en_US
dc.identifier.citedreferenceLaBella LA, Niechaj A & Rossignol S ( 1992 ). Low-threshold, short-latency cutaneous reflexes during fictive locomotion in the ‘semi-chronic’ spinal cat. Exp Brain Res 91, 236 – 248.en_US
dc.identifier.citedreferenceLacquaniti F, Grasso R & Zago M ( 1999 ). Motor patterns in walking. News Physiol Sci 14, 168 – 174.en_US
dc.identifier.citedreferenceLamb T & Yang JF ( 2000 ). Could different directions of infant stepping be controlled by the same locomotor central pattern generator? J Neurophysiol 83, 2814 – 2824.en_US
dc.identifier.citedreferenceLamont EV & Zehr EP ( 2006 ). Task-specific modulation of cutaneous reflexes expressed at functionally relevant gait cycle phases during level and incline walking and stair climbing. Exp Brain Res 173, 185 – 192.en_US
dc.identifier.citedreferenceMacKay-Lyons M ( 2002 ). Central pattern generation of locomotion: a review of the evidence. Phys Ther 82, 69 – 83.en_US
dc.identifier.citedreferenceMatthews PBC ( 1986 ). Observations on the automatic compensation of reflex gain on varying the pre-existing level of motor discharge in man. J Physiol 374, 73 – 90.en_US
dc.identifier.citedreferenceOlree KS & Vaughan CL ( 1995 ). Fundamental patterns of bilateral muscle activity in human locomotion. Biol Cybern 73, 409 – 414.en_US
dc.identifier.citedreferenceOrlovsky GN, Deliagina TG & Grillner S ( 1999 ). Neuronal Control of Locomotion: from Mollusc to Man. Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferencePratt CA & Loeb GE ( 1991 ). Functionally complex muscles of the cat hindlimb. I. Patterns of activation across sartorius. Exp Brain Res 85, 243 – 256.en_US
dc.identifier.citedreferenceRossignol S ( 1996 ). Neural control of stereotypic limb movements. In Handbook of Physiology, section 12, Exercise: Regulation and Integration of Multiple Systems, ed. Rowell LB & Shepherd JT, pp. 173 – 216. Oxford University Press, New York.en_US
dc.identifier.citedreferenceRossignol S, Dubuc R & Gossard JP ( 2006 ). Dynamic sensorimotor interactions in locomotion. Physiol Rev 86, 89 – 154.en_US
dc.identifier.citedreferenceSakamoto M, Endoh T, Nakajima T, Tazoe T, Shiozawa S & Komiyama T ( 2006 ). Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans. Clin Neurophysiol 117, 1301 – 1311.en_US
dc.identifier.citedreferenceSteldt RE & Schmit BD ( 2004 ). Modulation of coordinated muscle activity during imposed sinusoidal hip movements in human spinal cord injury. J Neurophysiol 92, 673 – 685.en_US
dc.identifier.citedreferenceStoloff R, Zehr EP & Ferris DP ( 2007 ). Recumbent stepping has similar but simpler neural control compared to walking. Exp Brain Res 178, 427 – 438.en_US
dc.identifier.citedreferenceThorstensson A ( 1986 ). How is the normal locomotor program modified to produce backward walking? Exp Brain Res 61, 664 – 668.en_US
dc.identifier.citedreferenceTing LH, Kautz SA, Brown DA, Van der Loos HF & Zajac FE ( 1998 ). Bilateral integration of sensorimotor signals during pedaling. Ann N Y Acad Sci 860, 513 – 516.en_US
dc.identifier.citedreferenceTing LH, Kautz SA, Brown DA & Zajac FE ( 1999 ). Phase reversal of biomechanical functions and muscle activity in backward pedaling. J Neurophysiol 81, 544 – 551.en_US
dc.identifier.citedreferenceTing LH, Kautz SA, Brown DA & Zajac FE ( 2000 ). Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling. J Neurophysiol 83, 3351 – 3365.en_US
dc.identifier.citedreferenceVan de Crommert HW, Mulder T & Duysens J ( 1998 ). Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 7, 251 – 263.en_US
dc.identifier.citedreferenceVan Wezel BM, Ottenhoff FA & Duysens J ( 1997 ). Dynamic control of location-specific information in tactile cutaneous reflexes from the foot during human walking. J Neurosci 17, 3804 – 3814.en_US
dc.identifier.citedreferenceWinter DA, Pluck N & Yang JF ( 1989 ). Backward walking: a simple reversal of forward walking? J Mot Behav 21, 291 – 305.en_US
dc.identifier.citedreferenceYang JF, Lam T, Pang MY, Lamont E, Musselman K & Seinen E ( 2004 ). Infant stepping: a window to the behaviour of the human pattern generator for walking. Can J Physiol Pharmacol 82, 662 – 674.en_US
dc.identifier.citedreferenceZehr EP ( 2005 ). Neural control of rhythmic human movement: the common core hypothesis. Exerc Sport Sci Rev 33, 54 – 60.en_US
dc.identifier.citedreferenceZehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR & Kido A ( 2004 a ). Possible contributions of spinal CPG activity to rhythmic human arm movement. Can J Physiol Pharmacol 82, 556 – 568.en_US
dc.identifier.citedreferenceZehr EP, Collins DF & Chua R ( 2001 ). Human interlimb reflexes evoked by electrical stimulation of cutaneous nerves innervating the hand and foot. Exp Brain Res 140, 495 – 504.en_US
dc.identifier.citedreferenceZehr EP & Duysens J ( 2004 ). Regulation of arm and leg movement during human locomotion. Neuroscientist 10, 347 – 361.en_US
dc.identifier.citedreferenceZehr EP & Haridas C ( 2003 ). Modulation of cutaneous reflexes in arm muscles during walking: further evidence of similar control mechanisms for rhythmic human arm and leg movements. Exp Brain Res 149, 260 – 266.en_US
dc.identifier.citedreferenceZehr EP, Hoogenboom N, Frigon A & Collins DF ( 2004 b ). Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not suppressed by rhythmic arm movement. Exp Brain Res 159, 382 – 388.en_US
dc.identifier.citedreferenceZehr EP & Hundza SR ( 2005 ). Forward and backward arm cycling are regulated by equivalent neural mechanisms. J Neurophysiol 93, 633 – 640.en_US
dc.identifier.citedreferenceZehr EP & Kido A ( 2001 ). Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes. J Physiol 537, 1033 – 1045.en_US
dc.identifier.citedreferenceZehr EP, Komiyama T & Stein RB ( 1997 ). Cutaneous reflexes during human gait: electromyographic and kinematic responses to electrical stimulation. J Neurophysiol 77, 3311 – 3325.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.