Show simple item record

Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo

dc.contributor.authorJiang, Hongyanen_US
dc.contributor.authorSha, Su-Huaen_US
dc.contributor.authorSchacht, Jochenen_US
dc.date.accessioned2010-04-01T14:43:21Z
dc.date.available2010-04-01T14:43:21Z
dc.date.issued2006-10en_US
dc.identifier.citationJiang, Hongyan; Sha, Su-Hua; Schacht, Jochen (2006). "Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo ." Journal of Neurochemistry 99(1): 269-276. <http://hdl.handle.net/2027.42/65167>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65167
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16903869&dopt=citationen_US
dc.description.abstractAminoglycoside antibiotics strongly bind to phosphoinositides and affect their membrane distribution and metabolism. Kanamycin treatment also disrupts Rac/Rho signaling pathways to the actin cytoskeleton in the mouse inner ear in vivo . Here, we investigate the influence of kanamycin on phosphoinositide signaling in sensory cells (hair cells) of the mouse cochlea. Immunoreactivity to phosphatidylinositol-3,4,5-trisphosphate (PIP 3 ) decreased in the organ of Corti, especially in outer hair cells, after 3–7 days of drug treatment, whereas imunoreactivity to phosphatidylinositol-4,5-bisphosphate (PIP 2 ) increased. Immunoreactivity to PIP 2 was present at the apical poles of outer hair cells, but appeared in their nuclei only after drug treatment. Furthermore, nuclear PIP 2 formed a complex with histone H3 and attenuated its acetylation in outer hair cells. In agreement with reduced PIP 3 signaling, phosphorylated Akt decreased in both the cytoplasm and nuclei of outer hair cells after kanamycin treatment. This study suggests that kanamycin disturbs the balance between PIP 2 and PIP 3 , modifies gene transcription via histone acetylation and diminishes the PI3K/Akt survival pathway. These actions may contribute to the death of outer hair cells, which is a consequence of chronic kanamycin treatment.en_US
dc.format.extent1007862 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 The Authors Journal Compilation 2006 International Society for Neurochemistryen_US
dc.subject.otherAkten_US
dc.subject.otherHistoneen_US
dc.subject.otherOuter Hair Cellsen_US
dc.subject.otherPhosphatidylinositol-4, 5-bisphosphateen_US
dc.subject.otherPhosphatidylinositol-3, 4, 5-trisphosphateen_US
dc.subject.otherSignaling Pathwaysen_US
dc.titleKanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivoen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother† Otorhinolaryngological Hospital of First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Chinaen_US
dc.identifier.pmid16903869en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65167/1/j.1471-4159.2006.04117.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2006.04117.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceArbuzova A., Martushova K., Hangyas-Mihalyne G., Morris A. J., Ozaki S., Prestwich G. D. and McLaughlin S. ( 2000 ) Fluorescently labeled neomycin as a probe of phosphatidylinositol-4, 5-bisphosphate in membranes. Biochim. Biophys. Acta 1464, 35 – 48.en_US
dc.identifier.citedreferenceBalla T., Bondeva T. and Varnai P. ( 2000 ) How accurately can we image inositol lipids in living cells? Trends Pharmacol. Sci. 21, 238 – 241.en_US
dc.identifier.citedreferenceBerthiaume M., Boufaied N., Moisan A. and Gaudreau L. ( 2006 ) High levels of oxidative stress globally inhibit gene transcription and histone acetylation. DNA Cell Biol. 25, 124 – 134.en_US
dc.identifier.citedreferenceBoronenkov I. V., Loijens J. C., Umeda M. and Anderson R. A. ( 1998 ) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547 – 3560.en_US
dc.identifier.citedreferenceCooper J. A. and Schafer D. A. ( 2000 ) Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 12, 97 – 103.en_US
dc.identifier.citedreferenceDe Matteis M. A., Di Campli A. and Godi A. ( 2005 ) The role of the phosphoinositides at the Golgi complex. Biochim. Biophys. Acta 1744, 396 – 405.en_US
dc.identifier.citedreferenceEnomoto R., Yoshida Y., Komai T., Sugahara C., Yasuoka Y. and Lee E. ( 2003 ) Involvement of the change in chromatin structure in thymocyte apoptosis induced by phosphorylation of histones. Ann. NY Acad. Sci. 1010, 218 – 220.en_US
dc.identifier.citedreferenceForge A. and Schacht J. ( 2000 ) Aminoglycoside antibiotics. Audiol. Neurotol. 5, 3 – 22.en_US
dc.identifier.citedreferenceFukami K., Matsuoka K., Nakanishi O., Yamakawa A., Kawai S. and Takenawa T. ( 1988 ) Antibody to phosphatidylinositol 4,5-bis-phosphate inhibits oncogene-induced mitogenesis. Proc. Natl Acad. Sci. USA 85, 9057 – 9061.en_US
dc.identifier.citedreferenceGonzales M. L. and Anderson R. A. ( 2006 ) Nuclear phosphoinositide kinases and inositol lipids. J. Cell. Biochem. 97, 252 – 260.en_US
dc.identifier.citedreferenceHirono M., Denis C. S., Richardson G. P. and Gillespie P. G. ( 2004 ) Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44, 309 – 320.en_US
dc.identifier.citedreferenceHolz R. W., Hlubek M. D., Sorensen S. D., Fisher S. K., Balla T., Ozaki S., Prestwich G. D., Stuenkel E. L. and Bittner M. A. ( 2000 ) A pleckstrin homology domain specific for phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P-2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P-2 as being important in exocytosis. J. Biol. Chem. 275, 17 878 – 17 885.en_US
dc.identifier.citedreferenceIrvine R. F. ( 2003 ) Nuclear lipid signaling. Nat. Rev. Mol. Cell Biol. 4, 1 – 12.en_US
dc.identifier.citedreferenceJanmey P. A. and Stossel T. P. ( 1989 ) Gelsolin–polyphosphoinositide interaction. Full expression of gelsolin-inhibiting function by polyphosphoinositides in vesicular form and inactivation by dilution, aggregation, or masking of the inositol head group. J. Biol. Chem. 264, 4825 – 4831.en_US
dc.identifier.citedreferenceJiang H., Sha S. H. and Schacht J. ( 2005 ) NF-βB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J. Neurosci. Res. 79, 644 – 651.en_US
dc.identifier.citedreferenceJiang H., Sha S. H., Forge A. and Schacht J. ( 2006a ) Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ. 13, 20 – 30.en_US
dc.identifier.citedreferenceJiang H., Sha S. H. and Schacht J. ( 2006b ) Rac/Rho pathway regulates actin depolymerization induced by aminoglycoside antibiotics. J. Neurosci. 83, 1544 – 1551. DOI: 10.1002/jnr.20833.en_US
dc.identifier.citedreferenceLesniak W., Pecoraro V. L. and Schacht J. ( 2005 ) Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species. Chem. Res. Toxicol. 18, 357 – 364.en_US
dc.identifier.citedreferenceLodhi S., Weiner N. D. and Schacht J. ( 1979 ) Interactions of neomycin with monomolecular films of polyphosphoinositides and other lipids. Biochim. Biophys. Acta 557, 1 – 8.en_US
dc.identifier.citedreferenceMartelli A. M., Follo M. Y., Evangelisti C., FalÀ F., Fiume R., Billi A. M. and Cocco L. ( 2005 ) Nuclear inositol lipid metabolism: more than just second messenger generation?. J. Cell. Biochem. 96, 285 – 292.en_US
dc.identifier.citedreferenceMontcouquiol M. and Corwin J. T. ( 2001 ) Intracellular signals that control cell proliferation in mammalian balance epithelia: key roles for phosphatidylinositol-3 kinase, mammalian target of rapamycin, and S6 kinases in preference to calcium, protein kinase C, and mitogen-activated protein kinase. J. Neurosci. 21, 570 – 580.en_US
dc.identifier.citedreferenceNagy I., Monge A., Albinger-Hegyi A., Schmid S. and Bodmer D. ( 2005 ) NF-kappaB is required for survival of immature auditory hair cells in vitro. JARO 6, 260 – 268.en_US
dc.identifier.citedreferenceNeri L. M., Borgatti P., Capitani S. and Martelli A. M. ( 2002 ) The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim. Biophys. Acta 1584, 73 – 80.en_US
dc.identifier.citedreferenceNicholson K. M. and Anderson N. G. ( 2002 ) The protein kinaseB/Akt signaling pathway in human malignancy. Cell. Signal. 14, 381 – 395.en_US
dc.identifier.citedreferenceOrsulakova A., Stockhorst E. and Schacht J. ( 1976 ) Effect of neomycin on phosphoinositide labelling and calcium binding in guinea-pig inner ear tissues in vivo and in vitro. J. Neurochem. 26, 285 – 290.en_US
dc.identifier.citedreferenceOsborne S. L., Thomas C. L., Gschmeissner S. and Schiavo G. ( 2001 ) Nuclear PtdIns (4,5),P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114, 2501 – 2511.en_US
dc.identifier.citedreferenceParker P. J. ( 2004 ) The ubiquitous phosphoinositides. Biochem. Soc. Trans. 32, 893 – 898.en_US
dc.identifier.citedreferencePrigent C. and Dimitrov S. ( 2003 ) Phosphorylation of serine 10 in histone H3, what for?. J. Cell Sci. 116, 3677 – 3685.en_US
dc.identifier.citedreferencePriuska E. and Schacht J. ( 1995 ) Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochem. Pharmacol. 50, 1749 – 1752.en_US
dc.identifier.citedreferenceSchacht J. ( 1976 ) Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea-pig cerebral cortex in vitro. J. Neurochem. 27, 1119 – 1124.en_US
dc.identifier.citedreferenceSchacht J. ( 1979 ) Isolation of an aminoglycoside receptor from guinea pig inner ear tissues and kidney. Arch. Oto-Rhino-Laryngol. 224, 129 – 134.en_US
dc.identifier.citedreferenceSong G., Ouyang G. and Bao S. ( 2005 ) The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59 – 71.en_US
dc.identifier.citedreferenceTakenawa T. and Miki H. ( 2001 ) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801 – 1809.en_US
dc.identifier.citedreferenceThomas C. L., Steel J., Prestwich G. D. and Schiavo G. ( 1999 ) Generation of phosphatidylinositol-specific antibodies and their characterization. Biochem. Soc. Trans. 27, 648 – 652.en_US
dc.identifier.citedreferenceVarnai P. and Balla T. ( 1998 ) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-( 3 H) inositol labeled phosphoinositide pools. J. Cell. Biol. 143, 501 – 510.en_US
dc.identifier.citedreferenceVerdone L., Caserta M. and Di Mauro E. ( 2005 ) Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 83, 344 – 353.en_US
dc.identifier.citedreferenceWilliams S. E., Zenner H. P. and Schacht J. ( 1987 ) Three molecular steps of aminoglycoside ototoxicity demonstrated in outer hair cells. Hear. Res. 30, 11 – 18.en_US
dc.identifier.citedreferenceWoodgett J. R. ( 2005 ) Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol. 17, 150 – 157.en_US
dc.identifier.citedreferenceWu W. J., Sha S. H., McLaren J. D., Kawamoto K., Raphael Y. and Schacht J. ( 2001 ) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear. Res. 158, 165 – 178.en_US
dc.identifier.citedreferenceYu H., Fukami K., Watanabe Y., Ozaki C. and Takenawa T. ( 1998 ) Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 251, 281 – 287.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.