Show simple item record

Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors

dc.contributor.authorFisher, Stephen K.en_US
dc.contributor.authorCheema, Tooba A.en_US
dc.contributor.authorFoster, Daniel J.en_US
dc.contributor.authorHeacock, Anne M.en_US
dc.date.accessioned2010-04-01T14:46:31Z
dc.date.available2010-04-01T14:46:31Z
dc.date.issued2008-09en_US
dc.identifier.citationFisher, Stephen K.; Cheema, Tooba A.; Foster, Daniel J.; Heacock, Anne M. (2008). "Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors." Journal of Neurochemistry 106(5): 1998-2014. <http://hdl.handle.net/2027.42/65223>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65223
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18518929&dopt=citationen_US
dc.format.extent585565 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 International Society for Neurochemistryen_US
dc.subject.otherATPen_US
dc.subject.otherGlutamateen_US
dc.subject.otherHyponatremiaen_US
dc.subject.otherRegulatory Volume Decreaseen_US
dc.subject.otherTaurineen_US
dc.subject.otherThrombinen_US
dc.titleVolume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptorsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum† Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid18518929en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65223/1/j.1471-4159.2008.05510.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2008.05510.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAbdullaev I. F., Sabirov R. Z. and Okada Y. ( 2003 ) Upregulation of swelling-activated Cl − channel sensitivity to cell volume by activation of EGF receptors in murine mammary cells. J. Physiol. 549, 749 – 758.en_US
dc.identifier.citedreferenceAbdullaev I. F., Rudkouskaya A., Schools G. P., Kimelberg H. K. and Mongin A. A. ( 2006 ) Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes. J. Physiol. 572, 677 – 689.en_US
dc.identifier.citedreferenceAitken P. G., Borgdorff A. J., Juta A. J., Kiehart D. P., Somjen G. G. and Wadman W. J. ( 1998 ) Volume changes induced by osmotic stress in freshly isolated rat hippocampal neurons. Pflugers Arch. 436, 991 – 998.en_US
dc.identifier.citedreferenceAlbrecht J. and Schousboe A. ( 2005 ) Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem. Res. 30, 1615 – 1621.en_US
dc.identifier.citedreferenceAltamirano J., Brodwick M. S. and Alvarez-Leefmans F. J. ( 1998 ) Regulatory volume decrease and intracellular Ca 2+ in murine neuroblastoma cells studied with fluorescent probes. J. Gen. Physiol. 112, 145 – 160.en_US
dc.identifier.citedreferenceAndrew R. D., Lobinowich M. E. and Osehobo E. P. ( 1997 ) Evidence against volume regulation by cortical brain cells during acute osmotic stress. Exp. Neurol. 143, 300 – 312.en_US
dc.identifier.citedreferenceAndrew R. D., Labron M. W., Boehnke S. E., Carnduff L. and Kirov S. A. ( 2007 ) Physiological evidence that pyramidal neurons lack functional water channels. Cereb. Cortex 17, 787 – 802.en_US
dc.identifier.citedreferenceBanderali U. and Roy G. ( 1992 ) Activation of K + and Cl − channels in MDCK cells during volume regulation in hypotonic media. J. Membr. Biol. 126, 219 – 234.en_US
dc.identifier.citedreferenceBasarsky T. A., Feighan D. and MacVicar B. A. ( 1999 ) Glutamate release through volume-activated channels during spreading depression. J. Neurosci. 19, 6439 – 6445.en_US
dc.identifier.citedreferenceBender A. S., Neary J. T. and Norenberg M. D. ( 1993 ) Role of phosphoinositide hydrolysis in astrocyte volume regulation. J. Neurochem. 61, 1506 – 1514.en_US
dc.identifier.citedreferenceBhardwaj A. ( 2006 ) Neurological impact of vasopressin dysregulation and hyponatremia. Ann. Neurol. 59, 229 – 236.en_US
dc.identifier.citedreferenceBoese S. H., Wehner F. and Kinne R. K. ( 1996 ) Taurine permeation through swelling-activated anion conductance in rat IMCD cells in primary culture. Am. J. Physiol. 271, F498 – F507.en_US
dc.identifier.citedreferenceBothwell J. H., Rae C., Dixon R. M., Styles P. and Bhakoo K. K. ( 2001 ) Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: implications for brain oedema in vivo. J. Neurochem. 77, 1632 – 1640.en_US
dc.identifier.citedreferenceBothwell J. H., Styles P. and Bhakoo K. K. ( 2002 ) Swelling-activated taurine and creatine effluxes from rat cortical astrocytes are pharmacologically distinct. J. Membr. Biol. 185, 157 – 164.en_US
dc.identifier.citedreferenceByfield F. J., Hoffman B. D., Romanenko V. G., Fang Y., Crocker J. C. and Levitan I. ( 2006 ) Evidence for the role of cell stiffness in modulation of volume-regulated anion channels. Acta Physiol. (Oxf) 187, 285 – 294.en_US
dc.identifier.citedreferenceCannon J. R., Hua Y., Richardson R. J., Xi G., Keep R. F. and Schallert T. ( 2007 ) The effect of thrombin on a 6-hydroxydopamine model of Parkinson’s disease depends on timing. Behav. Brain Res. 183, 161 – 168.en_US
dc.identifier.citedreferenceCheema T. A. and Fisher S. K. ( 2008 ) Cholesterol regulates volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following receptor activation. J. Pharmacol. Exp. Ther. 324, 648 – 657.en_US
dc.identifier.citedreferenceCheema T. A., Ward C. E. and Fisher S. K. ( 2005 ) Subnanomolar concentrations of thrombin enhance the volume-sensitive efflux of taurine from human 1321N1 astrocytoma cells. J. Pharmacol. Exp. Ther. 315, 755 – 763.en_US
dc.identifier.citedreferenceCheema T. A., Pettigrew V. A. and Fisher S. K. ( 2007 ) Receptor regulation of the volume-sensitive efflux of taurine and iodide from human SH-SY5Y neuroblastoma cells: differential requirements for Ca 2+ and protein kinase C. J. Pharmacol. Exp. Ther. 320, 1068 – 1077.en_US
dc.identifier.citedreferenceCohen D. M. ( 2005 ) SRC family kinases in cell volume regulation. Am. J. Physiol. Cell Physiol. 288, C483 – C493.en_US
dc.identifier.citedreferenceCrepel V., Panenka W., Kelly M. E. and MacVicar B. A. ( 1998 ) Mitogen-activated protein and tyrosine kinases in the activation of astrocyte volume-activated chloride current. J. Neurosci. 18, 1196 – 1206.en_US
dc.identifier.citedreferenceDarby M., Kuzmiski J. B., Panenka W., Feighan D. and MacVicar B. A. ( 2003 ) ATP released from astrocytes during swelling activates chloride channels. J. Neurophysiol. 89, 1870 – 1877.en_US
dc.identifier.citedreferenceDarquie A., Poline J. B., Poupon C., Saint-Jalmes H. and Le Bihan D. ( 2001 ) Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proc. Natl Acad. Sci. USA 98, 9391 – 9395.en_US
dc.identifier.citedreferenceDas A. K. and Hajra A. K. ( 1989 ) Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 24, 329 – 333.en_US
dc.identifier.citedreferenceDecher N., Lang H. J., Nilius B., Bruggemann A., Busch A. E. and Steinmeyer K. ( 2001 ) DCPIB is a novel selective blocker of I Cl, swell and prevents swelling-induced shortening of guinea-pig atrial action potential duration. Br. J. Pharmacol. 134, 1467 – 1479.en_US
dc.identifier.citedreferenceDeleuze C., Duvoid A., Moos F. C. and Hussy N. ( 2000 ) Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat suproptic nucleus. J. Physiol. 523, 291 – 299.en_US
dc.identifier.citedreferenceDezaki K., Tsumura T., Maeno E. and Okada Y. ( 2000 ) Receptor-mediated facilitation of cell volume regulation by swelling-induced ATP release in human epithelial cells. Jpn. J. Physiol. 50, 235 – 241.en_US
dc.identifier.citedreferenceDu X. Y. and Sorota S. ( 2000 ) Cardiac swelling-induced chloride current is enhanced by endothelin. J. Cardiovasc. Pharmacol. 35, 769 – 776.en_US
dc.identifier.citedreferenceEdsall L. C. and Spiegel S. ( 1999 ) Enzymatic measurement of sphingosine 1-phosphate. Anal. Biochem. 272, 80 – 86.en_US
dc.identifier.citedreferenceEl Idrissi A. ( 2008 ) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34, 321 – 328.en_US
dc.identifier.citedreferenceEllershaw D. C., Greenwood I. A. and Large W. A. ( 2002 ) Modulation of volume-sensitive chloride current by noradrenaline in rabbit portal vein myocytes. J. Physiol. 542, 537 – 547.en_US
dc.identifier.citedreferenceErnest N. J., Weaver A. K., Van Duyn L. B. and Sontheimer H. W. ( 2005 ) Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells. Am. J. Physiol. Cell Physiol. 288, C1451 – C1460.en_US
dc.identifier.citedreferenceFalktoft B. and Lambert I. H. ( 2004 ) Ca 2+ -mediated potentiation of the swelling-induced taurine efflux from HeLa cells: on the role of calmodulin and novel protein kinase C isoforms. J. Membr. Biol. 201, 59 – 75.en_US
dc.identifier.citedreferenceFields R. D. and Burnstock G. ( 2006 ) Purinergic signalling in neuron-glia interactions. Nat. Rev. Neurosci. 7, 423 – 436.en_US
dc.identifier.citedreferenceFigueroa B. E., Keep R. F., Betz A. L. and Hoff J. T. ( 1998 ) Plasminogen activators potentiate thrombin-induced brain injury. Stroke 29, 1202 – 1207.en_US
dc.identifier.citedreferenceFisher S. K., Novak J. E. and Agranoff B. W. ( 2002 ) Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J. Neurochem. 82, 736 – 754.en_US
dc.identifier.citedreferenceFoster D. J., Heacock A. M., Keep R. F. and Fisher S. K. ( 2008 ) Activation of muscarinic cholinergic receptors on human SH-SY5Y neuroblastoma cells enhances both the influx and efflux of K+ under conditions of hypo-osmolarity. J. Pharmacol. Exp. Ther. 325, 457 – 465.en_US
dc.identifier.citedreferenceFranco R., Quesada O. and Pasantes-Morales H. ( 2000 ) Efflux of osmolyte amino acids during isovolumic regulation in hippocampal slices. J. Neurosci. Res. 61, 701 – 711.en_US
dc.identifier.citedreferenceFranco R., Torres-Marquez M. E. and Pasantes-Morales H. ( 2001 ) Evidence for two mechanisms of amino acid osmolyte release from hippocampal slices. Pflugers Arch. 442, 791 – 800.en_US
dc.identifier.citedreferenceFranco R., Lezama R., Ordaz B. and Pasantes-Morales H. ( 2004 ) Epidermal growth factor receptor is activated by hyposmolarity and is an early signal modulating osmolyte efflux pathways in Swiss 3T3 fibroblasts. Pflugers Arch. 447, 830 – 839.en_US
dc.identifier.citedreferenceFuruta A., Wada E. and Wada K. ( 2007 ) Function of glial G-protein coupled receptors. Brain Nerve 59, 717 – 724.en_US
dc.identifier.citedreferenceGagnon K. B., Adragna N. C., Fyffe R. E. and Lauf P. K. ( 2007 ) Characterization of glial cell K–Cl cotransport. Cell Physiol. Biochem. 20, 121 – 130.en_US
dc.identifier.citedreferenceGow I. F., Thomson J., Davidson J. and Shennan D. B. ( 2005 ) The effect of a hyposmotic shock and purinergic agonists on K + (Rb + ) efflux from cultured human breast cancer cells. Biochim. Biophys. Acta 1712, 52 – 61.en_US
dc.identifier.citedreferenceHan X., Patters A. B., Jones D. P., Zelikovic I. and Chesney R. W. ( 2006 ) The taurine transporter: mechanisms of regulation. Acta Physiol. 187, 61 – 73.en_US
dc.identifier.citedreferenceHansson E. ( 1994 ) Metabotropic glutamate receptor activation induces astroglial swelling. J. Biol. Chem. 269, 21955 – 21961.en_US
dc.identifier.citedreferenceHaussinger D., Laubenberger J., vom Dahl S., Ernst T., Bayer S., Langer M., Gerok W. and Hennig J. ( 1994 ) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107, 1475 – 1480.en_US
dc.identifier.citedreferenceHeacock A. M., Kerley D., Gurda G. T., VanTroostenberghe A. T. and Fisher S. K. ( 2004 ) Potentiation of the osmosensitive release of taurine and D-aspartate from SH-SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors. J. Pharmacol. Exp. Ther. 311, 1097 – 1104.en_US
dc.identifier.citedreferenceHeacock A. M., Foster D. J. and Fisher S. K. ( 2006a ) Prostanoid receptors regulate the volume-sensitive efflux of osmolytes from murine fibroblasts via a cyclic AMP-dependent mechanism. J. Pharmacol. Exp. Ther. 319, 963 – 971.en_US
dc.identifier.citedreferenceHeacock A. M., Dodd M. S. and Fisher S. K. ( 2006b ) Regulation of volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following activation of lysophospholipid receptors. J. Pharmacol. Exp. Ther. 317, 685 – 693.en_US
dc.identifier.citedreferenceHoffmann E. K. and Lambert I. H. ( 1983 ) Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J. Physiol. 338, 613 – 625.en_US
dc.identifier.citedreferenceHoffmann E. K., Schettino T. and Marshall W. S. ( 2007 ) The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 29 – 43.en_US
dc.identifier.citedreferenceHolthoff K. and Witte O. W. ( 1996 ) Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. J. Neurosci. 16, 2740 – 2749.en_US
dc.identifier.citedreferenceHua Y., Wu J., Keep R. F., Hoff J. T. and Xi G. ( 2003a ) Thrombin exacerbates brain edema in focal cerebral ischemia. Acta Neurochir. Suppl. 86, 163 – 166.en_US
dc.identifier.citedreferenceHua Y., Keep R. F., Schallert T., Hoff J. T. and Xi G. ( 2003b ) A thrombin inhibitor reduces brain edema, glioma mass and neurological deficits in a rat glioma model. Acta Neurochir. 86 ( Suppl. ), 503 – 506.en_US
dc.identifier.citedreferenceHussy N., Bres V., Rochette M., Duvoid A., Alonso G., Dayanithi G. and Moos F. C. ( 2001 ) Osmoregulation of vasopressin secretion via activation of neurohypophysical nerve terminals glycine receptors by glial taurine. J. Neurosci. 21, 7110 – 7116.en_US
dc.identifier.citedreferenceIbsen L. and Strange K. ( 1996 ) In situ localization and osmotic regulation of the Na(+)-myo-inositol cotransporter in rat brain. Am. J. Physiol. 271, F877 – F885.en_US
dc.identifier.citedreferenceInoue H., Mori S., Morishima S. and Okada Y. ( 2005 ) Volume-sensitive chloride channels in mouse cortical neurons: characterization and role in volume regulation. Eur. J. Neurosci. 21, 1648 – 1658.en_US
dc.identifier.citedreferenceJackson P. S. and Strange K. ( 1993 ) Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265, C1489 – C1500.en_US
dc.identifier.citedreferenceJackson P. S., Morrison R. and Strange K. ( 1994 ) The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am. J. Physiol. 267, C1203 – C1209.en_US
dc.identifier.citedreferenceJeremic A., Jeftinija K., Stevanovic J., Glavaski A. and Jeftinija S. ( 2001 ) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J. Neurochem. 77, 664 – 675.en_US
dc.identifier.citedreferenceJia F., Yue M., Chandra D., Keramidas A., Goldstein P. A., Homanics G. E. and Harrison N. L. ( 2008 ) Taurine is a potent activator of extrasynaptic GABA(A) receptors in the thalamus. J. Neurosci. 28, 106 – 115.en_US
dc.identifier.citedreferenceJunankar P. R. and Kirk K. ( 2000 ) Organic osmolyte channels: a comparative view. Cell Physiol. Biochem. 10, 355 – 360.en_US
dc.identifier.citedreferenceJunankar P. R., Karjalainen A. and Kirk K. ( 2002 ) The role of P 2Y1 purinergic receptors and cytosolic Ca 2+ in hypotonically activated osmolyte efflux from a rat hepatoma cell line. J. Biol. Chem. 277, 40324 – 40334.en_US
dc.identifier.citedreferenceKim H. D., Bowen J. W., James-Kracke M. R., Landon L. A., Camden J. M., Burnett J. E. and Turner J. T. ( 1996 ) Potentiation of regulatory volume decrease by P 2U purinoceptors in HSG-PA cells. Am. J. Physiol. 270, C86 – C97.en_US
dc.identifier.citedreferenceKimelberg H. K. ( 1995 ) Current concepts of brain edema. Review of laboratory investigations. J. Neurosurg. 83, 1051 – 1059.en_US
dc.identifier.citedreferenceKimelberg H. K., Goderie S. K., Higman S., Pang S. and Waniewski R. A. ( 1990 ) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10, 1583 – 1591.en_US
dc.identifier.citedreferenceKimelberg H. K., Macvicar B. A. and Sontheimer H. ( 2006 ) Anion channels in astrocytes: biophysics, pharmacology, and function. Glia 54, 747 – 757.en_US
dc.identifier.citedreferenceKirk K. and Strange K. ( 1998 ) Functional properties and physiological roles of organic solute channels. Annu. Rev. Physiol. 60, 719 – 739.en_US
dc.identifier.citedreferenceKreisman N. R. and Olson J. E. ( 2003 ) Taurine enhances volume regulation in hippocampal slices swollen osmotically. Neuroscience 120, 635 – 642.en_US
dc.identifier.citedreferencede La Paz L. D., Lezama R., Torres-Marquez M. E. and Pasantes-Morales H. ( 2002 ) Tyrosine kinases and amino acid efflux under hyposmotic and ischaemic conditions in the chicken retina. Pflugers Arch. 445, 87 – 96.en_US
dc.identifier.citedreferenceLambert I. H. ( 1989 ) Leukotriene-D4 induced cell shrinkage in Ehrlich ascites tumor cells. J. Membr. Biol. 108, 165 – 176.en_US
dc.identifier.citedreferenceLambert I. H. and Hoffmann E. K. ( 1994 ) Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells. J. Membr. Biol. 142, 289 – 298.en_US
dc.identifier.citedreferenceLang F. ( 2007 ) Mechanisms and significance of cell volume regulation. J. Am. Coll. Nutr. 26, 613S – 623S.en_US
dc.identifier.citedreferenceLang F., Busch G. L., Ritter M., Volkl H., Waldegger S., Gulbins E. and Haussinger D. ( 1998 ) Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247 – 306.en_US
dc.identifier.citedreferenceLeaney J. L., Marsh S. J. and Brown D. A. ( 1997 ) A swelling-activated chloride current in rat sympathetic neurones. J. Physiol. 501, 555 – 564.en_US
dc.identifier.citedreferenceLevitan I., Christian A. E., Tulenko T. N. and Rothblat G. H. ( 2000 ) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J. Gen. Physiol. 115, 405 – 416.en_US
dc.identifier.citedreferenceLi G. and Olson J. E. ( 2004 ) Extracellular ATP activates chloride and taurine conductances in cultured hippocampal neurons. Neurochem. Res. 29, 239 – 246.en_US
dc.identifier.citedreferenceLien Y. H. and Shapiro J. I. ( 2007 ) Hyponatremia: clinical diagnosis and management. Am. J. Med. 120, 653 – 658.en_US
dc.identifier.citedreferenceLien Y. H., Shapiro J. I. and Chan L. ( 1991 ) Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J. Clin. Invest. 88, 303 – 309.en_US
dc.identifier.citedreferenceLinseman D. A., McEwen E. L., Sorensen S. D. and Fisher S. K. ( 1998 ) Cytoskeletal and phosphoinositide requirements for muscarinic receptor signaling to focal adhesion kinase and paxillin. J. Neurochem. 70, 940 – 950.en_US
dc.identifier.citedreferenceLinseman D. A., Hofmann F. and Fisher S. K. ( 2000 ) A role for the small molecular weight GTPases, Rho and Cdc42, in muscarinic receptor signaling to focal adhesion kinase. J. Neurochem. 74, 2010 – 2020.en_US
dc.identifier.citedreferenceLinseman D. A., Heidenreich K. A. and Fisher S. K. ( 2001 ) Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. J. Biol. Chem. 276, 5622 – 5628.en_US
dc.identifier.citedreferenceLoveday D., Heacock A. M. and Fisher S. K. ( 2003 ) Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells. J. Neurochem. 87, 476 – 486.en_US
dc.identifier.citedreferenceLuttrell D. K. and Luttrell L. M. ( 2004 ) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23, 7969 – 7978.en_US
dc.identifier.citedreferenceLux H. D., Heinemann U. and Dietzel I. ( 1986 ) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv. Neurol. 44, 619 – 639.en_US
dc.identifier.citedreferenceManolopoulos G. V., Prenen J., Droogmans G. and Nilius B. ( 1997a ) Thrombin potentiates volume-activated chloride currents in pulmonary artery endothelial cells. Pflugers Arch. 433, 845 – 847.en_US
dc.identifier.citedreferenceManolopoulos V. G., Droogmans G. and Nilius B. ( 1997b ) Hypotonicity and thrombin activate taurine efflux in BC3H1 and C2C12 myoblasts that is downregulated during differentiation. Biochem. Biophys. Res. Commun. 232, 74 – 79.en_US
dc.identifier.citedreferenceMassieu L., Montiel T., Robles G. and Quesada O. ( 2004 ) Brain amino acids during hyponatremia in vivo: clinical observations and experimental studies. Neurochem. Res. 29, 73 – 81.en_US
dc.identifier.citedreferenceMcIlwain H. and Bachelard H. ( 1971 ) Biochemistry and the Central Nervous System. Churchill Livingstone, Edinburgh and London, p 172.en_US
dc.identifier.citedreferenceMcManus M. L., Churchwell K. B. and Strange K. ( 1995 ) Regulation of cell volume in health and disease. N. Engl. J. Med. 333, 1260 – 1266.en_US
dc.identifier.citedreferenceMiller T. J., Hanson R. D. and Yancey P. H. ( 2000 ) Developmental changes in organic osmolytes in prenatal and postnatal rat tissues. Comp. Biochem. Physiol. 125, 45 – 56.en_US
dc.identifier.citedreferenceMongin A. A. ( 2007 ) Disruption of ionic and cell volume homeostasis in cerebral ischemia: the perfect storm. Pathophysiology 14, 183 – 193.en_US
dc.identifier.citedreferenceMongin A. A. and Kimelberg H. K. ( 2002 ) ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am. J. Physiol. Cell Physiol. 283, C569 – C578.en_US
dc.identifier.citedreferenceMongin A. A. and Kimelberg H. K. ( 2005 ) ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca 2+ -sensitive mechanisms. Am. J. Physiol. Cell Physiol. 288, C204 – C213.en_US
dc.identifier.citedreferenceMongin A. A. and Orlov S. N. ( 2001 ) Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8, 77 – 88.en_US
dc.identifier.citedreferenceMongin A. A., Aksentsev S. L., Orlov S. N., Slepko N. G., Kozlova M. V., Maximov G. V. and Konev S. V. ( 1994 ) Swelling-induced K + influx in cultured primary astrocytes. Brain Res. 655, 110 – 114.en_US
dc.identifier.citedreferenceMongin A. A., Aksentsev S. L., Orlov S. N., Kvacheva Z. B., Mezen N. I., Fedulov A. S. and Konev S. V. ( 1996 ) Swelling-induced activation of Na +, K +, 2Cl − cotransport in C6 glioma cells: kinetic properties and intracellular signalling mechanisms. Biochim. Biophys. Acta 1285, 229 – 236.en_US
dc.identifier.citedreferenceMongin A. A., Cai Z. and Kimelberg H. K. ( 1999a ) Volume-dependent taurine release from cultured astrocytes requires permissive [Ca(2+)] i and calmodulin. Am. J. Physiol. 277, C823 – C832.en_US
dc.identifier.citedreferenceMongin A. A., Reddi J. M., Charniga C. and Kimelberg H. K. ( 1999b ) [ 3 H]taurine and D-[ 3 H]aspartate release from astrocyte cultures are differently regulated by tyrosine kinases. Am. J. Physiol. 276, C1226 – C1230.en_US
dc.identifier.citedreferenceMorales I., Dopico J. G., Sabate M., Gonzalez-Hernandez T. and Rodriguez M. ( 2007 ) Substantia nigra osmoregulation: taurine and ATP involvement. Am. J. Physiol. 292, C1934 – C1941.en_US
dc.identifier.citedreferenceMorales-Mulia S., Cardin V., Torres-Marquez M. E., Crevenna A. and Pasantes-Morales H. ( 2001 ) Influence of protein kinases on the osmosensitive release of taurine from cerebellar granule neurons. Neurochem. Int. 38, 153 – 161.en_US
dc.identifier.citedreferenceMoran A. and Turner R. J. ( 1993 ) Secretagogue-induced RVD in HSY cells is due to K + channels activated by Ca 2+ and protein kinase C. Am. J. Physiol. 265, C1405 – C1411.en_US
dc.identifier.citedreferenceMoran J., Morales-Mulia S., Hernandez-Cruz A. and Pasantes-Morales H. ( 1997 ) Regulatory volume decrease and associated osmolyte fluxes in cerebellar granule neurons are calcium independent. J. Neurosci. Res. 47, 144 – 154.en_US
dc.identifier.citedreferenceMoran J., Morales-Mulia M. and Pasantes-Morales H. ( 2001 ) Reduction of phospholemman expression decreases osmosensitive taurine efflux in astrocytes. Biochim. Biophys. Acta 1538, 313 – 320.en_US
dc.identifier.citedreferenceMulligan S. J. and MacVicar B. A. ( 2006 ) VRACs CARVe a path for novel mechanisms of communication in the CNS. Sci. STKE 2006, pe42.en_US
dc.identifier.citedreferenceMusante L., Zegarra-Moran O., Montaldo P. G., Ponzoni M. and Galietta L. J. ( 1999 ) Autocrine regulation of volume-sensitive anion channels in airway epithelial cells by adenosine. J. Biol. Chem. 274, 11701 – 11707.en_US
dc.identifier.citedreferenceNagelhus E. A., Lehmann A. and Ottersen O. P. ( 1993 ) Neuronal-glial exchange of taurine during hypo-osmotic stress: a combined immunocytochemical and biochemical analysis in rat cerebellar cortex. Neuroscience 54, 615 – 631.en_US
dc.identifier.citedreferenceNakamura T., Xi G., Park J. W., Hua Y., Hoff J. T. and Keep R. F. ( 2005 ) Holo-transferrin and thrombin can interact to cause brain damage. Stroke 36, 348 – 352.en_US
dc.identifier.citedreferenceNiermann H., Amiry-Moghaddam M., Holthoff K., Witte O. W. and Ottersen O. P. ( 2001 ) A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J. Neurosci. 21, 3045 – 3051.en_US
dc.identifier.citedreferenceNilius B. and Droogmans G. ( 2003 ) Amazing chloride channels: an overview. Acta Physiol. Scand. 177, 119 – 147.en_US
dc.identifier.citedreferenceNilius B., Eggermont J., Voets T., Buyse G., Manolopoulos V. and Droogmans G. ( 1997 ) Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69 – 119.en_US
dc.identifier.citedreferenceNovak J. E., Agranoff B. W. and Fisher S. K. ( 2000 ) Regulation of Myo-inositol homeostasis in differentiated human NT2-N neurons. Neurochem. Res. 25, 561 – 566.en_US
dc.identifier.citedreferenceOkada Y. ( 2006 ) Cell volume-sensitive chloride channels: phenotypic properties and molecular identity. Contrib. Nephrol. 152, 9 – 24.en_US
dc.identifier.citedreferenceOlson J. E. ( 1999 ) Osmolyte contents of cultured astrocytes grown in hypoosmotic medium. Biochim. Biophys. Acta 1453, 175 – 179.en_US
dc.identifier.citedreferenceOlson J. E. and Martinho E. ( 2006 ) Regulation of taurine transport in rat hippocampal neurons by hypo-osmotic swelling. J. Neurochem 96, 1375 – 1389.en_US
dc.identifier.citedreferenceOrdaz B., Vaca L., Franco R. and Morales H. P. ( 2004 ) Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: contribution of two types of K + channels. Am. J. Physiol. Cell Physiol. 286, C1399 – C1409.en_US
dc.identifier.citedreferencePasantes-Morales H. and Morales Mulia S. ( 2000 ) Influence of calcium on regulatory volume decrease: role of potassium channels. Nephron 86, 414 – 427.en_US
dc.identifier.citedreferencePasantes-Morales H., Cardin V. and Tuz K. ( 2000a ) Signaling events during swelling and regulatory volume decrease. Neurochem. Res. 9, 1301 – 1314.en_US
dc.identifier.citedreferencePasantes-Morales H., Franco R., Torres-Marquez M. E., Hernandez-Fonseca K. and Ortega A. ( 2000b ) Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell Physiol. Biochem. 10, 361 – 370.en_US
dc.identifier.citedreferencePasantes-Morales H., Franco R., Ordaz B. and Ochoa L. D. ( 2002 ) Mechanisms counteracting swelling in brain cells during hyponatremia. Arch. Med. Res. 33, 237 – 244.en_US
dc.identifier.citedreferencePasantes-Morales H., Lezama R. A. and Ramos-Mandujano G. ( 2006a ) Tyrosine kinases and osmolyte fluxes during hyposmotic swelling. Acta Physiol. (Oxf) 187, 93 – 102.en_US
dc.identifier.citedreferencePasantes-Morales H., Lezama R. A., Ramos-Mandujano G. and Tuz K. L. ( 2006b ) Mechanisms of cell volume regulation in hypo-osmolarity. Am. J. Med. 119, S4 – S11.en_US
dc.identifier.citedreferencePhillis J. W., Song D. and O’Regan M. H. ( 1997 ) Inhibition by anion channel blockers of ischemia-evoked release of excitotoxic and other amino acids from rat cerebral cortex. Brain Res. 758, 9 – 16.en_US
dc.identifier.citedreferencePhillis J. W., Song D. and O’Regan M. H. ( 1998 ) Tamoxifen, a chloride channel blocker, reduces glutamate and aspartate release from the ischemic cerebral cortex. Brain Res. 780, 352 – 355.en_US
dc.identifier.citedreferencePierson P. M., Peteri-Brunback B., Pisani D. F., Abbracchio M. P., Mienville J. M. and Rosso L. ( 2007 ) A 2b receptor mediates adenosine inhibition of taurine efflux from pituicytes. Biol. Cell 99, 445 – 454.en_US
dc.identifier.citedreferencePow D. V., Sullivan R., Reye P. and Hermanussen S. ( 2002 ) Localization of taurine transporters, taurine, and 3 H taurine accumulation in the rat retina, pituitary, and brain. Glia 37, 153 – 168.en_US
dc.identifier.citedreferenceQuesada O., Ordaz B., Morales-Mulia S. and Pasantes-Morales H. ( 1999 ) Influence of Ca 2+ on K + efflux during regulatory volume decrease in cultured astrocytes. J. Neurosci. Res. 57, 350 – 358.en_US
dc.identifier.citedreferenceRamos-Mandujano G., Vazquez-Juarez E., Hernandez-Benitez R. and Pasantes-Morales H. ( 2007 ) Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes. Glia 55, 917 – 925.en_US
dc.identifier.citedreferenceRen Z., Raucci F. J. Jr, Browe D. M. and Baumgarten C. M. ( 2008 ) Regulation of swelling-activated Cl − current by angiotensin II signalling and NADPH oxidase in rabbit ventricle. Cardiovasc. Res. 77, 73 – 80.en_US
dc.identifier.citedreferenceRomanenko V. G., Rothblat G. H. and Levitan I. ( 2004 ) Sensitivity of volume-regulated anion current to cholesterol structural analogues. J. Gen. Physiol. 123, 77 – 87.en_US
dc.identifier.citedreferenceRosso L., Peteri-Brunback B., Poujeol P., Hussy N. and Mienville J. M. ( 2004 ) Vasopressin-induced taurine efflux from rat pituicytes: a potential negative feedback for hormone secretion. J. Physiol. 554, 731 – 742.en_US
dc.identifier.citedreferenceRudkouskaya A., Chernoguz A., Haskew-Layton R. E. and Mongin A. A. ( 2008 ) Two conventional PKC isoforms, alpha and betaI, are involved in the ATP-induced regulation of VRAC and glutamate release in cultured astrocytes. J. Neurochem. 105, 2260 – 2270.en_US
dc.identifier.citedreferenceSanchez-Olea R., Fuller C., Benos D. and Pasantes-Morales H. ( 1995 ) Volume-associated osmolyte fluxes in cell lines with or without the anion exchanger. Am. J. Physiol. 269, 1280 – 1286.en_US
dc.identifier.citedreferenceSanchez-Olea R., Morales M., Garcia O. and Pasantes-Morales H. ( 1996 ) Cl channel blockers inhibit the volume-activated efflux of Cl and taurine in cultured neurons. Am. J. Physiol. 270, C1703 – C1708.en_US
dc.identifier.citedreferenceSarfaraz D. and Fraser C. L. ( 1999 ) Effects of arginine vasopressin on cell volume regulation in brain astrocyte in culture. Am. J. Physiol. 276, E596 – E601.en_US
dc.identifier.citedreferenceShennan D. B. ( 2008 ) Swelling-induced taurine transport: relationship with chloride channels, anion exchangers and other swelling-activated transport pathways. Cell Physiol. Biochem. 21, 15 – 28.en_US
dc.identifier.citedreferenceShimizu T., Morishima S. and Okada Y. ( 2000 ) Ca 2+ -sensing receptor-mediated regulation of volume-sensitive Cl − channels in human epithelial cells. J. Physiol. 528, 457 – 472.en_US
dc.identifier.citedreferenceSinning R., Schliess F., Kubitz R. and Haussinger D. ( 1997 ) Osmosignalling in C6 glioma cells. FEBS Lett. 400, 163 – 167.en_US
dc.identifier.citedreferenceStrange K., Morrison R., Shrode L. and Putnam R. ( 1993 ) Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am. J. Physiol. 265, C244 – C256.en_US
dc.identifier.citedreferenceStutzin A. and Hoffmann E. K. ( 2006 ) Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol. (Oxf) 187, 27 – 42.en_US
dc.identifier.citedreferenceStutzin A., Torres R., Oporto M., Pacheco P., Eguiguren A. L., Cid L. P. and Sepulveda F. V. ( 1999 ) Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am. J. Physiol. 277, C392 – C402.en_US
dc.identifier.citedreferenceSykova E. ( 2004 ) Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129, 861 – 876.en_US
dc.identifier.citedreferenceTakano T., Kang J., Jaiswal J. K. et al. ( 2005 ) Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc. Natl Acad. Sci. USA 102, 16466 – 16471.en_US
dc.identifier.citedreferenceThorne R. G. and Nicholson C. ( 2006 ) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl Acad. Sci. USA 103, 5567 – 5572.en_US
dc.identifier.citedreferenceThoroed S., Soergaard M., Cragoe E. and Fugelli K. ( 1995 ) The osmolality-sensitive taurine channel in flounder erythrocytes is strongly stimulated by noradrenaline under hypo-osmotic conditions. J. Exp. Biol. 198, 311 – 324.en_US
dc.identifier.citedreferenceThurston J. H., Sherman W. R., Hauhart R. E. and Kloepper R. F. ( 1989 ) Myo-inositol: a newly identified nonnitrogenous osmoregulatory molecule in mammalian brain. Pediatr. Res. 26, 482 – 485.en_US
dc.identifier.citedreferenceToman R. E. and Spiegel S. ( 2002 ) Lysophospholipid receptors in the nervous system. Neurochem. Res. 27, 619 – 627.en_US
dc.identifier.citedreferenceTuz K. and Pasantes-Morales H. ( 2005 ) Hypoosmolarity evokes norepinephrine efflux from synaptosomes via a depolarization and Ca 2+ -dependent exocytotic mechanism. Eur. J. Neurosci. 22, 1636 – 1642.en_US
dc.identifier.citedreferenceTuz K., Ordaz B., Vaca L., Quesada O. and Pasantes-Morales H. ( 2001 ) Isovolumetric regulation mechanisms in cultured cerebellar granule neurons. J. Neurochem. 79, 143 – 151.en_US
dc.identifier.citedreferenceTuz K., Pena-Segura C., Franco R. and Pasantes-Morales H. ( 2004 ) Depolarization, exocytosis and amino acid release evoked by hypoosmolarity from cortical synaptosomes. Eur. J. Neurosci. 19, 916 – 924.en_US
dc.identifier.citedreferenceUckermann O., Wolf A., Kutzera F., Kalisch F., Beck-Sickinger A. G., Wiedemann P., Reichenbach A. and Bringmann A. ( 2006 ) Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide Y. J. Neurosci. Res. 83, 538 – 550.en_US
dc.identifier.citedreferenceVazquez-Juarez E., Ramos-Mandujano G., Hernandez-Benitez R. and Pasantes-Morales H. ( 2008a ) On the role of G-protein coupled receptors in cell volume regulation. Cell Physiol. Biochem. 21, 1 – 14.en_US
dc.identifier.citedreferenceVazquez-Juarez E., Ramos-Mandujano G., Lezama R. A., Cruz-Rangel S., Islas L. D. and Pasantes-Morales H. ( 2008b ) Thrombin increases hyposmotic taurine efflux and accelerates I Cl-swell and RVD in 3T3 fibroblasts by a src-dependent EGFR transactivation. Pflugers Arch. 455, 859 – 872.en_US
dc.identifier.citedreferenceVerbalis J. G. and Drutarosky M. D. ( 1988 ) Adaptation to chronic hypoosmolality in rats. Kidney Int. 34, 351 – 360.en_US
dc.identifier.citedreferenceViana F., de la Pena E., Pecson B., Schmidt R. F. and Belmonte C. ( 2001 ) Swelling-activated calcium signalling in cultured mouse primary sensory neurons. Eur. J. Neurosci. 13, 722 – 734.en_US
dc.identifier.citedreferenceVideen J. S., Michaelis T., Pinto P. and Ross B. D. ( 1995 ) Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J. Clin. Invest. 95, 788 – 793.en_US
dc.identifier.citedreferenceWarskulat U., Borsch E., Reinehr R., Heller-Stilb B., Roth C., Witt M. and Haussinger D. ( 2007 ) Taurine deficiency and apoptosis: findings from the taurine transporter knockout mouse. Arch. Biochem. Biophys. 462, 202 – 209.en_US
dc.identifier.citedreferenceWurm A., Pannicke T., Wiedemann P., Reichenbach A. and Bringmann A. ( 2008 ) Glial cell-derived glutamate mediates autocrine cell volume regulation in the retina: activation by VEGF. J. Neurochem. 104, 386 – 399.en_US
dc.identifier.citedreferenceXi G., Reiser G. and Keep R. F. ( 2003 ) The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J. Neurochem. 84, 3 – 9.en_US
dc.identifier.citedreferenceZhang Y., Jin Y., Behr M. J., Feustel P. J., Morrison J. P. and Kimelberg H. K. ( 2005 ) Behavioral and histological neuroprotection by tamoxifen after reversible focal cerebral ischemia. Exp. Neurol. 196, 41 – 46.en_US
dc.identifier.citedreferenceZhang Y., Zhang H., Feustel P. J. and Kimelberg H. K. ( 2008 ) DCPIB, a specific inhibitor of volume regulated anion channels (VRACs), reduces infarct size in MCA o and the release of glutamate in the ischemic cortical penumbra. Exp. Neurol. 210, 514 – 520.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.