Show simple item record

Transient changes in nucleus accumbens amino acid concentrations correlate with individual responsivity to the predator fox odor 2,5-dihydro-2,4,5-trimethylthiazoline

dc.contributor.authorVenton, Barbara Jillen_US
dc.contributor.authorRobinson, Terry E.en_US
dc.contributor.authorKennedy, Robert T.en_US
dc.date.accessioned2010-04-01T14:54:55Z
dc.date.available2010-04-01T14:54:55Z
dc.date.issued2006-01en_US
dc.identifier.citationVenton, B. Jill; Robinson, Terry E.; Kennedy, Robert T. (2006). "Transient changes in nucleus accumbens amino acid concentrations correlate with individual responsivity to the predator fox odor 2,5-dihydro-2,4,5-trimethylthiazoline." Journal of Neurochemistry 96(1): 236-246. <http://hdl.handle.net/2027.42/65371>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65371
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16300631&dopt=citationen_US
dc.description.abstractPredator odors elicit fear and defensive behavioral responses in rats, but a wide range of individual responsivity exists. The aim of this study was to examine whether individual differences in behavioral responsivity correlate with differences in amino acid neurotransmission to a predator fox odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). We investigated the time course of behaviorally evoked amino acid neurotransmitter changes in the nucleus accumbens using on-line microdialysis coupled to capillary electrophoresis with 14-s temporal resolution. One subset of animals (high responders) showed a large, biphasic increase in amino acids, such as glutamate and GABA, which lasted about 3 min. These neurochemical changes were highly correlated with increases in locomotion and burrowing, but lagged behind the behavioral changes by 2 min. A second subset of rats (low responders) showed neither behavioral activation nor changes in amino acid neurotransmission. As a positive control, rats were subjected to tail pinch, which evoked transient changes in amino acids in all animals. Cocaine (2 mg/kg, i.v.) increased locomotion but not amino acid levels. This work demonstrates that rapid and transient increases in amino acid neurotransmitters correlate with behavioral reactivity to salient stimuli.en_US
dc.format.extent413620 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 The Authors Journal Compilation 2005 International Society for Neurochemistryen_US
dc.subject.otherCapillary Electrophoresisen_US
dc.subject.otherCocaineen_US
dc.subject.otherFox Odoren_US
dc.subject.otherGlutamateen_US
dc.subject.otherTail Pinchen_US
dc.subject.otherTaurineen_US
dc.titleTransient changes in nucleus accumbens amino acid concentrations correlate with individual responsivity to the predator fox odor 2,5-dihydro-2,4,5-trimethylthiazolineen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Pharmacology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Chemistryen_US
dc.contributor.affiliationother† Psychologyen_US
dc.identifier.pmid16300631en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65371/1/j.1471-4159.2005.03549.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2005.03549.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBaker D. A., Xi Z. X., Shen H., Swanson C. J. and Kalivas P. W. ( 2002 ) The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 22, 9134 – 9141.en_US
dc.identifier.citedreferenceBassareo V., De Luca M. A. and Di Chiara G. ( 2002 ) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J. Neurosci. 22, 4709 – 4719.en_US
dc.identifier.citedreferenceBlanchard D. C., Griebel G. and Blanchard R. J. ( 2003 ) Conditioning and residual emotionality effects of predator stimuli: some reflections on stress and emotion. Prog. Neuropsychopharm. Biol. Psychiatry 27, 1177 – 1185.en_US
dc.identifier.citedreferenceBowser M. T. and Kennedy R. T. ( 2001 ) In vivo monitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis. Electrophoresis 22, 3668 – 3676.en_US
dc.identifier.citedreferenceChefer V. I., Zakharova I. and Shippenberg T. S. ( 2003 ) Enhanced responsiveness to novelty and cocaine is associated with decreased basal dopamine uptake and release in the nucleus accumbens: Quantitative microdialysis in rats under transient conditions. J. Neurosci. 23, 3076 – 3084.en_US
dc.identifier.citedreferenceCrombag H. S., Badiana A. and Robinson T. E. ( 1996 ) Signalled vs unsignalled intravenous amphetamine: large differences in the acute psychomotor response and sensitization. Brain Res. 722, 227 – 231.en_US
dc.identifier.citedreferenceDay H. E. W., Massini C. V. and Campeau S. ( 2004 ) The pattern of c-fos mRNA induced by a component of fox odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), in rats, suggests both systemic and processive stress characteristics. Brain Res. 1025, 139 – 151.en_US
dc.identifier.citedreferenceDel Arco A. and Mora F. ( 1999 ) Effects of endogenous glutamate on extracellular concentrations of GABA, dopamine, and dopamine metabolites in the prefrontal cortex of the freely moving rat: Involvement of NMDA and AMPA/KA receptors. Neurochem. Res. 24, 1027 – 1035.en_US
dc.identifier.citedreferenceDel Arco A., Segovia G. and Mora F. ( 2000 ) Effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat: involvement of NMDA and AMPA/kainate receptors. Amino Acids 19, 729 – 738.en_US
dc.identifier.citedreferenceDielenberg R. A. and McGregor I. S. ( 2001 ) Defensive behavior in rats toward predatory odors: a review. Neurosci. Biobehav. Rev. 25, 597 – 609.en_US
dc.identifier.citedreferenceHebb A. L. O., Zacharko R. M., Gauthier M., Trudel F., Laforest S. and Drolet G. ( 2004 ) Brief exposure to predator odor and resultant anxiety enhances mesocorticolimbic activity and enkephalin expression in CD-1 mice. Eur. J. Neurosci. 20, 2415 – 2429.en_US
dc.identifier.citedreferenceHotsenpiller G. and Wolf M. E. ( 2003 ) Baclofen attenuates conditioned locomotion to cues associated with cocaine administration and stabilized extracellular glutamate levels in the rat nucleus accumbens. Neuroscience 118, 123 – 134.en_US
dc.identifier.citedreferenceLada M. W., Vickroy T. W. and Kennedy R. T. ( 1998 ) Evidence for neuronal origin and metabotropic receptor-mediated regulation of extracellular glutamate and aspartate in rat striatum in vivo following electrical stimulation of the prefrontal cortex. J. Neurochem. 70, 617 – 625.en_US
dc.identifier.citedreferenceMakara G. B. and Haller J. ( 2001 ) Non-genomic effects of glucocorticoids in the neural system – Evidence, mechanisms and implications. Prog. Neurobiol. 65, 367 – 390.en_US
dc.identifier.citedreferenceMarinelli M. and Piazza P. V. ( 2002 ) Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur. J. Neurosci. 16, 387 – 394.en_US
dc.identifier.citedreferenceMcFarland K., Davidge S. B., Lapish C. C. and Kalivas P. W. ( 2004 ) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J. Neurosci. 24, 1551 – 1560.en_US
dc.identifier.citedreferenceMoghaddam B. ( 1993 ) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J. Neurochem. 60, 1650 – 1657.en_US
dc.identifier.citedreferenceMorrow B. A., Redmond A. J., Roth R. H. and Elsworth J. D. ( 2000 ) The predator odor, TMT, displays a unique stress-like pattern of dopaminergic and endrocrinological activation in the rat. Brain Res. 864, 146 – 151.en_US
dc.identifier.citedreferenceOlive M. F., Mehmert K. K. and Hodge C. W. ( 2000 ) Microdialysis in the mouse nucleus accumbens: a method for detection of monamine and amino acid neurotransmitters with simultaneous assessment of locomotor activity. Brain Res. Brain Res. Protoc. 5, 16 – 24.en_US
dc.identifier.citedreferencePaez X. and Hernandez L. ( 2001 ) Biomedical applications of capillary electrophoresis with laser-induced fluorescence detection. Biopharm. Drug Dispos. 22, 273 – 289.en_US
dc.identifier.citedreferenceParrot S., Bert L., Mouly-Badina L. et al. ( 2003 ) Microdialysis monitoring of catecholamines and excitatory amino acids in the rat and mouse brain: recent developments based on capillary electrophoresis with laser-induced fluorescence detection – a mini-review. Cell. Mol. Neurobiol. 23, 793 – 804.en_US
dc.identifier.citedreferencePasantes-Morales H. and Schousboe A. ( 1997 ) Role of taurine in osmoregulation in brain cells: mechanisms and functional implications. Amino Acids 12, 281 – 292.en_US
dc.identifier.citedreferencePasantes-Morales H., Franco R., Ochoa L. and OrdaZ. B. ( 2004 ) Osmosensitive release of neurotransmitter amino acids: relevance and mechanisms. Neurochem. Res. 27, 59 – 65.en_US
dc.identifier.citedreferencePaxinos G. and Watson C. ( 1998 ) The Rat Brain in Stereotaxic Coordinates. Academic, New York.en_US
dc.identifier.citedreferencePetit H. O. and Justice J. B. ( 1991 ) Effects of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res. 539, 94 – 102.en_US
dc.identifier.citedreferencePinel J. P. and Treit D. ( 1978 ) Burying as a defensive response in rats. J. Comp. Physiol. Psychol. 92, 708 – 712.en_US
dc.identifier.citedreferencePrasad A., Henry M. and Prasad C. ( 1996 ) Heterogeneity in the performance of outbred Sprague–Dawley rats in an elevated-plus maze test: a possible animal model for anxiety disorders. Life Sci. 59, 1499 – 1506.en_US
dc.identifier.citedreferenceRada P., Moreno S. A., Tucci S., Gonzalez L. E., Harrison T., Chau D. T., Hoebel B. G. and Hernandez L. ( 2003 ) Glutamate release in the nucleus accumbens is involved in behavioral depression during the Porsolt swim test. Neuroscience 119, 557 – 565.en_US
dc.identifier.citedreferenceRedgrave P., Prescott T. J. and Gurney K. ( 1999 ) Is the short latency dopamine response too short to signal reward error? Trends Neurosci. 22, 146 – 151.en_US
dc.identifier.citedreferenceReid M. S. and Berger S. P. ( 1996 ) Evidence for sensitization of cocaine-induced nucleus accumbens glutamate release. Neuroreport 7, 1325 – 1329.en_US
dc.identifier.citedreferenceSaulskaya N. and Marsden C. A. ( 1995a ) Conditioned dopamine release-dependence on N -methyl-d-aspartate receptors. Neuroscience 67, 57 – 63.en_US
dc.identifier.citedreferenceSaulskaya N. and Marsden C. A. ( 1995b ) Extracellular glutamate in the nucleus accumbens during a conditioned emotional response in the rat. Brain Res. 698, 114 – 120.en_US
dc.identifier.citedreferenceShackman J. G., Watson C. J. and Kennedy R. T. ( 2004 ) High-throughput automated post-processing of separation data. J. Chromatogr. A 1040, 273 – 282.en_US
dc.identifier.citedreferenceSinha R. ( 2001 ) How does stress increase risk of drug abuse and relapse? Psychopharmacology 158, 343 – 359.en_US
dc.identifier.citedreferenceSmith J. A., Mo Q., Guo H., Kunko P. M. and Robinsin S. E. ( 1995 ) Cocaine increases extraneuronal levels of aspartate and glutamate in the nucleus accumbens. Brain Res. 683, 264 – 269.en_US
dc.identifier.citedreferenceStiller C. O., Taylor B. K., Linderoth B., Gustafsson H., Afrah A. W. and Brodin E. ( 2003 ) Microdialysis in pain research. Adv. Drug Deliv. Rev. 55, 1065 – 1079.en_US
dc.identifier.citedreferenceXue C. J., Ng J. P., Li Y. and Wolf M. E. ( 1996 ) Acute and repeated systemic amphetamine administration: effects on extracellular glutamate, aspartate, and serine levels in rat ventral tegmental area and nucleus accumbens. J. Neurochem. 67, 352 – 363.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.