Show simple item record

Expression and permeation properties of the K + channel Kir7.1 in the retinal pigment epithelium

dc.contributor.authorShimura, Masahikoen_US
dc.contributor.authorYuan, Yukunen_US
dc.contributor.authorChang, Jinghua T.en_US
dc.contributor.authorZhang, Suiyuanen_US
dc.contributor.authorCampochiaro, Peter A.en_US
dc.contributor.authorZack, Donald J.en_US
dc.contributor.authorHughes, Bret A.en_US
dc.date.accessioned2010-04-01T14:55:59Z
dc.date.available2010-04-01T14:55:59Z
dc.date.issued2001-03en_US
dc.identifier.citationShimura, Masahiko; Yuan, Yukun; Chang, Jinghua T.; Zhang, Suiyuan; Campochiaro, Peter A.; Zack, Donald J.; Hughes, Bret A. (2001). "Expression and permeation properties of the K + channel Kir7.1 in the retinal pigment epithelium." The Journal of Physiology 531(2): 329-346. <http://hdl.handle.net/2027.42/65390>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65390
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11230507&dopt=citationen_US
dc.format.extent1261401 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© The Physiological Society 2001en_US
dc.titleExpression and permeation properties of the K + channel Kir7.1 in the retinal pigment epitheliumen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Department of Physiology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationother* W. K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciencesen_US
dc.contributor.affiliationother† Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USAen_US
dc.contributor.affiliationother§ Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USAen_US
dc.contributor.affiliationotherMolecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USAen_US
dc.identifier.pmid11230507en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65390/1/j.1469-7793.2001.0329i.x.pdf
dc.identifier.doi10.1111/j.1469-7793.2001.0329i.xen_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceAusubel F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1996 ). Current Protocols in Molecular Biology. John Wiley & Sons, New Yorken_US
dc.identifier.citedreferenceBaumgartner W., Isias, L. & Sigworth, F. J. ( 1999 ). Two-microelectrode voltage clamp of Xenopus oocytes: Voltage errors and compensation for local current flow. Biophysical Journal 77, 1980 – 1991.en_US
dc.identifier.citedreferenceBialek S. & Miller, S. ( 1994 ). K + and Cl − transport mechanisms in bovine pigment epithelium that could modulate subretinal space volume and composition. Journal of Physiology 475, 53 – 67.en_US
dc.identifier.citedreferenceChang J., Milligan, S., Li, Y., Campochiaro, P. A., Hyde, D. & Zack, D. J. ( 1997 ). Mammalian homolog of Drosophila retinal degeneration B rescues the mutant phenotype in the fly. Journal of Neuroscience 17, 5881 – 5890.en_US
dc.identifier.citedreferenceChang J. T., Esumi, N., Moore, K., Li, Y., Zhang, S., Chew, C., Goodman, B., Amir Rattner, A., Moody, S., Stetten, G., Campochiaro, P. A. & Zack, D. J. ( 1999 ). Cloning and characterization of a secreted frizzled-related protein that is expressed by the retinal pigment epithelium. Human Molecular Genetics 8, 575 – 583.en_US
dc.identifier.citedreferenceChoe H., Sackin, H. & Palmer, L. G. ( 1998 ). Permeation and gating of an inwardly rectifying potassium channel. Evidence for a variable energy well. Journal of General Physiology 112, 433 – 446.en_US
dc.identifier.citedreferenceDÖring F., Derst, C., Wischmeyer, E., Karschin, C., Schneggenburger, R., Daut, J. & Karschin, A. ( 1998 ). The epithelial inward rectifier channel Kir7. 1 displays unusual K + permeation properties. Journal of Neuroscience 18, 8625 – 8636.en_US
dc.identifier.citedreferenceGoldin A. L. ( 1992 ). Maintenance of Xenopus laevis and oocyte injection. Methods in Enzymology 207, 266 – 279.en_US
dc.identifier.citedreferenceGriff E. R., Shirao, Y. & Steinberg, R. H. ( 1985 ). Ba 2+ unmasks K + modulation of the Na + -K + pump in the retinal pigment epithelium. Journal of General Physiology 86, 853 – 876.en_US
dc.identifier.citedreferenceHamill O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. ( 1981 ). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. PflÜgers Archiv 391, 85 – 100.en_US
dc.identifier.citedreferenceHeinemann S. H. & Conti, F. ( 1992 ). Nonstationary noise analysis and application to patch clamp recordings. Methods in Enzymology 207, 131 – 149.en_US
dc.identifier.citedreferenceHille B. ( 1992 ). Ionic Channels of Excitable Membranes, 2nd edn. Sinauer Associates Inc., Sunderland, MA, USA.en_US
dc.identifier.citedreferenceHo K., Nichols, C. G., Lederer, W. J., Lytton, J., Vassilev, P. M., Kanazirska, M. V. & Hebert, S. C. ( 1993 ). Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362, 31 – 38.en_US
dc.identifier.citedreferenceHuang B. & Karwoski, C. ( 1992 ). Light-evoked expansion of subretinal space volume in the retina of the frog. Journal of Neuroscience 12, 4243 – 4252.en_US
dc.identifier.citedreferenceHughes B. A., Adorante, J. S., Miller, S. S. & Lin, H. ( 1989 ). Apical electrogenic NaHCO 3 cotransport. A mechanism for HCO 3 absorption across the retinal pigment epithelium. Journal of General Physiology 94, 125 – 150.en_US
dc.identifier.citedreferenceHughes B. A., Gallemore, R. P. & Miller, S. S. ( 1998 ). Transport mechanisms in the retinal pigment epithelium. In The Retinal Pigment Epithelium: Function and Disease, ed. Marmor, M. F. & Wolfensberger, T. J., pp. 103 – 134. Oxford University Press, New Yorken_US
dc.identifier.citedreferenceHughes B. A., Shaikh, A. & Ahmad, A. ( 1995 a ). Effects of Ba 2+ and Cs + on apical membrane K + conductance in toad retinal pigment epithelium. American Journal of Physiology 268, C1164 – 1172.en_US
dc.identifier.citedreferenceHughes B. A. & Steinberg, R. H. ( 1990 ). Voltage-dependent currents in isolated cells of the frog retinal pigment epithelium. Journal of Physiology 428, 273 – 297.en_US
dc.identifier.citedreferenceHughes B. A. & Takahira, M. ( 1996 ). Inwardly rectifying K + currents in isolated human retinal pigment epithelial cells. Investigative Ophthalmolology and Visual Science 37, 1125 – 1139.en_US
dc.identifier.citedreferenceHughes B. A. & Takahira, M. ( 1998 ). ATP-dependent regulation of inwardly rectifying K + current in bovine retinal pigment epithelial cells. American Journal of Physiology 275, C1372 – 1383.en_US
dc.identifier.citedreferenceHughes B. A., Takahira, M. & Segawa, Y. ( 1995 b ). An outwardly rectifying K + current active near resting membrane potential in human retinal pigment epithelial cells. American Journal of Physiology 269, 179 – 187.en_US
dc.identifier.citedreferenceJackson P. S. & Strange, K. ( 1996 ). Single channel properties of a volume sensitive anion channel: Lessons from noise analysis. Kidney International 49, 1695 – 1699.en_US
dc.identifier.citedreferenceJoseph D. P. & Miller, S. S. ( 1991 ). Apical and basement membrane ion transport mechanism in bovine retinal pigment epithelium. Journal of Physiology 435, 439 – 463.en_US
dc.identifier.citedreferenceKofuji P., Davidson, N. & Lester, H. A. ( 1995 ). Evidence that neuronal G-protein-gated inwardly rectifying K + channels are activated by G beta gamma subunits and function as heteromultimers. Proceeding of the National Academy of Sciences of the USA 92, 6542 – 6546.en_US
dc.identifier.citedreferenceKrapivinsky G., Medina, I., Eng, L., Krapivinsky, L., Yang, Y. & Clapham, D. E. ( 1998 ). A novel inward rectifier K + channel with unique pore properties. Neuron 20, 995 – 1005.en_US
dc.identifier.citedreferenceKubo Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. ( 1993 ). Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362, 127 – 133.en_US
dc.identifier.citedreferenceKusaka S., Horio, Y., Fujita, A., Matsushita, K., Inanobe, A., Gotow, T., Uchiyama, Y., Tano, Y. & Kurachi, Y. ( 1999 ). Expression and polarized distribution of an inwardly rectifying K + channel, Kir4. 1, in rat retinal pigment epithelium. Journal of Physiology 520, 373 – 381.en_US
dc.identifier.citedreferenceLasansky A. & De Fisch, F. W. ( 1966 ). Potential, current, and ionic influxes across the isolated retinal pigment epithelium and choroid. Journal of General Physiology 49, 913 – 924.en_US
dc.identifier.citedreferenceLi J. D., Gallemore, R. P., Dmitriev, A. & Steinberg, R. H. ( 1994 ). Light-dependent hydration of the space surrounding the photoreceptors in chick retina. Investigative Ophthalmology and Visual Science 35, 2700 – 2711.en_US
dc.identifier.citedreferenceLÖffler K. & Hunter, M. ( 1997 ). Cation permeation and blockade of ROMK1, a cloned renal potassium channel. PflÜgers Archiv 434, 151 – 158.en_US
dc.identifier.citedreferenceLopatin A. N. & Nicholas, C. G. ( 1996 ). [K + ] dependence of open channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2. 1). Biophysical Journal 71, 682 – 694.en_US
dc.identifier.citedreferenceMiller S. S. & Edelman, J. L. ( 1990 ). Active ion transport pathways in the bovine retinal pigment epithelium. Journal of Physiology 424, 283 – 300.en_US
dc.identifier.citedreferenceMiller S. S. & Steinberg, R. H. ( 1977 ). Passive ionic properties of frog retinal pigment epithelium. Journal of Membrane Biology 36, 337 – 372.en_US
dc.identifier.citedreferenceMiller S. S., Steinberg, R. H. & Oakley, B. I. ( 1978 ). The electrogenic sodium pump of the frog retinal pigment epithelium. Journal of Membrane Biology 67, 199 – 209.en_US
dc.identifier.citedreferenceNakamura N., Suzuki, Y., Ikeda, Y., Notoya, M. & Hirose, S. ( 2000 ). Complete structure and regulation of the rate gene for inward rectifier potassium channel Kir7. 1. Journal of Biological Chemistry 275, 28276 – 28284.en_US
dc.identifier.citedreferenceNakamura N., Suzuki, Y., Sakuta, H., Ookata, K., Kawahara, K. & Hirose, S. ( 1999 ). Inwardly rectifying K + channel Kir7. 1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial: implication for a functional coupling with Na +,K + -ATPase. Biochemical Journal 342, 329 – 336.en_US
dc.identifier.citedreferenceNichols C. G. & Lopatin, A. N. ( 1997 ). Inward rectifier potassium channel. Annual Review of Physiology 59, 171 – 191.en_US
dc.identifier.citedreferenceOakley B. I. & Green, D. G. ( 1976 ). Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. Journal of Neurophysiology 39, 1117 – 1133.en_US
dc.identifier.citedreferenceOkami T., Yamamoto, A., Omori, K., Takada, T., Uyama, M. & Tashiro, Y. ( 1990 ). Immunocytochemical localization of Na +,K + -ATPase in rat retinal pigment epithelial cells. Journal of Histochemistry and Cytochemistry 38, 1267 – 1275.en_US
dc.identifier.citedreferencePartiseti M., Collura, V., Agnel, M., Culouscou, J. M. & Graham, D. ( 1998 ). Cloning and characterization of a novel human inwardly rectifying potassium channel predominantly expressed in small intestine. FEBS Letters 434, 171 – 176.en_US
dc.identifier.citedreferenceQuinn R. H. & Miller, S. S. ( 1992 ). Ion transport mechanisms in native human retinal pigment epithelium. Investigative Ophthalmology and Visual Science 33, 3513 – 3527.en_US
dc.identifier.citedreferenceReimann F. & Ashcroft, F. M. ( 1999 ). Inwardly rectifying potassium channels. Current Opinion in Cell Biology 11, 503 – 508.en_US
dc.identifier.citedreferenceReuveny E., Jan, Y. N. & Jan, L. Y. ( 1996 ). Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K + channel to K + -selective permeation. Biophysical Journal 70, 754 – 761.en_US
dc.identifier.citedreferenceRodriguez-Boulan E. & Zurzolo, C. ( 1993 ). Polarity signals in epithelial cells. Journal of Cell Science Supplement 17, 335 – 343.en_US
dc.identifier.citedreferenceSambrook J., Fritsch, F. F. & Maniatis, T. ( 1989 ). Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, New Yorken_US
dc.identifier.citedreferenceSegawa Y. & Hughes, B. A. ( 1994 ). Properties of the inwardly rectifying K + conductance in the toad retinal pigment epithelium. Journal of Physiology 476, 41 – 53.en_US
dc.identifier.citedreferenceShimura M., Yuan, Y. & Hughes, B. A. ( 1999 ). Cation permeability of the inwardly rectifying potassium conductance in bovine retinal pigment epithelial (RPE) cells. Investigative Ophthalmology and Visual Science 40, S499 ( abstract )en_US
dc.identifier.citedreferenceShuck M. E., Piser, T. M., Bock, J. H., Slightom, J. L., Lee, K. S. & Bienkowski, M. J. ( 1997 ). Cloning and characterization of two K + inward rectifier (Kir) 1. 1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3). Journal of Biological Chemistry 272, 586 – 593.en_US
dc.identifier.citedreferenceStanden N. B. & Stanfield, P. R. ( 1980 ). Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibers. Journal of Physiology 304, 415 – 435.en_US
dc.identifier.citedreferenceSteinberg R. & Miller, S. ( 1973 ). Aspects of electrolyte transport in frog pigment epithelium. Experimental Eye Research 16, 365 – 372.en_US
dc.identifier.citedreferenceStuhmer W. ( 1992 ). Electrophysiological recording from Xenopus oocytes. Methods in Enzymology 207, 319 – 339.en_US
dc.identifier.citedreferenceTakahira M. & Hughes, B. A. ( 1997 ). Isolated bovine retinal pigment epithelial cells express delayed rectifier type and M-type K + currents. American Journal of Physiology 273, C790 – 803.en_US
dc.identifier.citedreferenceTakumi T., Ishii, T., Horio, Y., Morishige, K., Takahashi, N., Yamada, M., Yamashita, T., Kiyama, H., Sohmiya, K., Nakanishi, S. & Kurachi, Y. ( 1995 ). A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. Journal of Biological Chemistry 270, 16339 – 16346.en_US
dc.identifier.citedreferenceTraynelis S. F. & Jaramillo, F. ( 1998 ). Getting the most out of noise in the central nervous system. Trends in Neurosciences 21, 137 – 145.en_US
dc.identifier.citedreferenceWelling P. A. ( 1997 ). Primary structure and functional expression of a cortical collecting duct Kir channel. American Journal of Physiology 273, F825 – 836.en_US
dc.identifier.citedreferenceWischmeyer E., Doring, F. & Karschin, A. ( 2000 ). Stable cation coordination at a single outer pore residue defines permeation properties in Kir channels. FEBS Letters 466, 115 – 120.en_US
dc.identifier.citedreferenceYuan Y., Chang, J. T., Shimura, M., Campochiaro, P. A., Zack, D. J. & Hughes, B. A. ( 2000 ). Molecular cloning and functional expression of Kir7. 1, an inwardly rectifying K + channel from the retinal pigment epithelium (RPE). Investigative Ophthalmology and Visual Science 41, S613 ( abstract )en_US
dc.identifier.citedreferenceZhou H., Tate, S. S. & Palmer, L. G. ( 1994 ). Primary structure and functional properties of an epithelial K channel. American Journal of Physiology 266, C809 – 824.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.