Show simple item record

Fe 2+ -Induced Lysis and Lipid Peroxidation of Chromaffin Granules

dc.contributor.authorSpears, Ronald M.en_US
dc.contributor.authorHolz, Ronald W.en_US
dc.date.accessioned2010-04-01T14:58:44Z
dc.date.available2010-04-01T14:58:44Z
dc.date.issued1985-05en_US
dc.identifier.citationSpears, Ronald M.; Holz, Ronald W. (1985). "Fe 2+ -Induced Lysis and Lipid Peroxidation of Chromaffin Granules." Journal of Neurochemistry 44(5): 1559-1565. <http://hdl.handle.net/2027.42/65437>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65437
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2985754&dopt=citationen_US
dc.description.abstractChromaffin granules, the catecholaminergic storage granules from adrenal chromaffin cells, lysed in 10 −9 –10 −7 M Fe 2+ . Lysis was accompanied by the production of malondialdehyde which results from lipid peroxidation. Both chromaffin granule lysis and malondialdehyde production were inhibited by the free radical trapping agent butylated hydroxytoluene but not by catalase and/or superoxide dismutase. The results suggest that lysis resulted from a direct transfer of electrons from Fe 2+ to a component of the chromaffin granule membrane without the participation of either superoxide or hydrogen peroxide and may have resulted from lipid peroxidation. In some experiments, ascorbate alone induced chromaffin granule lysis which was inhibited by EDTA, EGTA, or deferoxamine. The lysis was probably caused by trace amounts of reducible polyvalent cation. Lysis sometimes occurred when Ca 2+ was added with EGTA (10 Μ M free Ca 2+ concentration) and was consistently observed together with malondialdehyde production in the presence of Ca 2+ , EGTA, and 10 Μ M Fe 2+ (total concentration). The apparent Ca 2+ dependency for chromaffin granule lysis and malondialdehyde production was probably caused by a trace reducible polyvalent ion displaced by Ca 2+ from EGTA and not by a Ca 2+ -dependent reaction involving the chromaffin granule.en_US
dc.format.extent690888 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1985 International Society for Neurochemistryen_US
dc.subject.otherChromaffin Granulesen_US
dc.subject.otherFe 2+en_US
dc.subject.otherMalondialdehydeen_US
dc.subject.otherLipid Peroxidationen_US
dc.subject.otherCa 2+en_US
dc.titleFe 2+ -Induced Lysis and Lipid Peroxidation of Chromaffin Granulesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid2985754en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65437/1/j.1471-4159.1985.tb08795.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1985.tb08795.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBeers R. F. and Sizer I. W. ( 1952 ) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133 – 140.en_US
dc.identifier.citedreferenceBradford M. M. ( 1976 ) A rapid and sensitive assay for the quantitation of microgram quantities of protein utilizing the principles of protein dye binding. Anal. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceBuege J. A. and Aust S. D. ( 1978 ) Microsomal lipid peroxidation, in Methods in Enzymology, Vol. 52, Part C ( Fleisher S. and Packer L., eds ), pp. 302 – 310. Academic Press, New York.en_US
dc.identifier.citedreferenceDiliberto E. J., Heckman G. D., and Daniels A. ( 1983 ) Characterization of ascorbic acid transport by adrenomedullary chromaffin cells. J. Biol. Chem. 258, 12886 – 12894.en_US
dc.identifier.citedreferenceDouglas W. W. and Rubin R. P. ( 1961 ) The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. (Lond.) 159, 40 – 57.en_US
dc.identifier.citedreferenceFenwick E. M., Fajdiga P. B., Howe N. S. B., and Livett B. G. ( 1978 ) Functional and morphological characterization of isolated bovine adrenal medullary cells. J. Cell Biol. 76, 12 – 30.en_US
dc.identifier.citedreferenceGould E. S. ( 1959 ) Mechanism and Structure in Organic Chemistry, p. 690. Holt Rinehart and Winston, New York.en_US
dc.identifier.citedreferenceHillarp N. and Nilson B. ( 1954 ) The structure of the adrenaline and noradrenaline containing granules in the adrenal medullary cells with reference to the storage and release of the sympathomimetric amines. Acta Physiol. Scand. 31 ( Suppl. 113 ), 79 – 107.en_US
dc.identifier.citedreferenceHolz R. W. ( 1979 ) Measurement of membrane potential of chromaffin granules by the accumulation of triphenylmethyl-phosphonium cation. J. Biol. Chem. 254, 6703 – 6709.en_US
dc.identifier.citedreferenceHolz R. W., Senter R. A., and Frye R. A. ( 1982 ) Relationship between Ca 2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla. J. Neurochem. 39, 635 – 646.en_US
dc.identifier.citedreferenceJohnson R. G. and Scarpa A. ( 1976 ) Ion permeability of isolated chromaffin granules. J. Gen. Physiol. 68, 601 – 631.en_US
dc.identifier.citedreferenceKilpatrick D. L., Ledbetter F. H., Carson K. A., Kirshner A. G., Slepetis R., and Kirshner N. ( 1980 ) Stability of bovine adrenal medulla cells in culture. J. Neurochem. 35, 679 – 692.en_US
dc.identifier.citedreferenceKilpatrick D. L., Slepetis R. J., Corcoran J. J., and Kirshner N. ( 1982 ) Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427 – 435.en_US
dc.identifier.citedreferenceKnight D. E. and Kesteven N. T. ( 1983 ) Evoked transient intracellular free Ca 2+ changes and secretion in isolated bovine adrenal medullary cells. Proc. R. Soc. Lond. [Biol.] 238, 177 – 199.en_US
dc.identifier.citedreferenceKonings F. and DePotter W. ( 1982 ) The chromaffin granuleplasma membrane interaction as a model for exocytosis: quantitative release of the soluble granular content. Biochem. Biophys. Res. Commun. 104, 254 – 258.en_US
dc.identifier.citedreferenceKuo C. H., Hata F., Yoshida H., Yamatodani A., and Wada H. ( 1979 ) Effects of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles. Life Sci. 24, 911 – 916.en_US
dc.identifier.citedreferenceMak I. T., Misra H. P., and Weglicki W. B. ( 1983 ) Temporal relationship of free radical-induced lipid peroxidation and loss of latent enzyme activity in highly enriched hepatic lysosomes. J. Biol. Chem. 258, 13733 – 13737.en_US
dc.identifier.citedreferenceMartell A. E. and Smith R. M. ( 1974 ) Critical Stability Constants, Vol. 1: Amino Acids, pp. 269 – 271. Plenum Press, New York.en_US
dc.identifier.citedreferenceMcCord J. M. and Fridovich I. ( 1969 ) Superoxide dismutase: an enzyme function for erthrocuprein (hemocuprein). J. Biol. Chem. 244, 6049 – 6055.en_US
dc.identifier.citedreferenceMcKnight R. C., Hunter F. E. Jr., and Oehlert W. H. ( 1965 ) Mitochondrial membrane ghosts produced by lipid peroxidation induced by ferrous ion. J. Biol. Chem. 240, 3439 – 3446.en_US
dc.identifier.citedreferenceNjus D., Knoth J., Cook C., and Kelley P. M. ( 1983 ) Electron transfer across the chromaffin granule membrane. J. Biol. Chem. 258, 27 – 30.en_US
dc.identifier.citedreferenceOwen J. D. ( 1976 ) The determination of the stability constant of calcium-EGTA. Biochim. Biophys. Acta 451, 321 – 325.en_US
dc.identifier.citedreferencePederson T. C. and Aust S. D. ( 1975 ) The mechanism of liver microsomal lipid peroxidation. Biochim. Biophys. Acta 385, 232 – 241.en_US
dc.identifier.citedreferencePinchasi I., Michaelson D. M., and Sokolovsky M. ( 1979 ) Cholinergic nerve terminals contain ascorbic acid which induces Ca 2+ -dependent release of acetylcholine and ATP from isolated Torpedo synaptic vesicles. FEBS Lett. 108, 189 – 192.en_US
dc.identifier.citedreferencePortzehl H., Caldwell P. C., and Ruegg J. C. ( 1964 ) The dependence of contraction and relaxation of muscle fibres from crab Maja Squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta 79, 581 – 591.en_US
dc.identifier.citedreferenceRao P. S. and Mueller H. S. ( 1983 ) Lipid peroxidation and acute myocardia ischemia. Adv. Exp. Med. Biol. 161, 347 – 363.en_US
dc.identifier.citedreferenceSharma O. P. ( 1979 ) Ascorbic acid, iron and nonenzymatic lipid peroxidation in rat brain mitochondria. Int. J. Biochem. Biophys. 16, 139 – 142.en_US
dc.identifier.citedreferenceTappel A. L. and Zalkin H. ( 1959 ) Lipid peroxidation in isolated mitochondria. Arch. Biochem. Biophys. 80, 326.en_US
dc.identifier.citedreferenceTrifaro J. M. and Dworkind J. ( 1970 ) A new and simple method for isolation of adrenal chromaffin granules by means of an isotonic density gradient. Anal. Biochem. 34, 403 – 412.en_US
dc.identifier.citedreferenceTriggs W. J. and Willmore L. J. ( 1984 ) In vivo lipid peroxidation in rat brain following intracortical Fe 2+ injection. J. Neurochem. 42, 976 – 980.en_US
dc.identifier.citedreferenceViveros O. H., Arqueros L., and Kirshner N. ( 1968 ) Release of catecholamines and dopamine-Β-oxidase from the adrenal medulla. Life Sci. Part 1, 7, 609 – 618.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.