Show simple item record

Properties of Quisqualate-Sensitive L-[ 3 H]Glutamate Binding Sites in Rat Brain as Determined by Quantitative Autoradiography

dc.contributor.authorCha, Jang-Ho J.en_US
dc.contributor.authorTimothy Greenamyre, J.en_US
dc.contributor.authorNielsen, Elsebet Ø.en_US
dc.contributor.authorPenney, John B.en_US
dc.contributor.authorYoung, Anne B.en_US
dc.date.accessioned2010-04-01T15:00:15Z
dc.date.available2010-04-01T15:00:15Z
dc.date.issued1988-08en_US
dc.identifier.citationCha, Jang-Ho J.; Timothy Greenamyre, J.; Nielsen, Elsebet Ø.; Penney, John B.; Young, Anne B. (1988). "Properties of Quisqualate-Sensitive L-[ 3 H]Glutamate Binding Sites in Rat Brain as Determined by Quantitative Autoradiography." Journal of Neurochemistry 51(2): 469-478. <http://hdl.handle.net/2027.42/65464>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65464
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2899133&dopt=citationen_US
dc.description.abstractQuisqualate, a glutamate analogue, displaced L-[ 3 H]glutamate binding in a biphasic manner, corresponding to “high-affinity” and “low-affinity” binding sites. High-affinity quisqualate sites were termed “quisqualate-sensitive L-[ 3 H]glutamate” binding sites. Quisqualate-sen-sitive L-[ 3 H]glutamate binding was regionally distributed, with the highest levels present in the cerebellar molecular layer. This binding was stimulated by millimolar concentrations of chloride and calcium. The stimulatory effects of calcium required the presence of chloride ions, whereas chloride's stimulatory effects did not require calcium. All of the L-[ 3 H]glutamate binding stimulated by chloride/calcium was quisqualate sensitive and only weakly displaced by N -methyl-D-aspartate, L-aspartate, or kainate. At high concentrations (1 m M ), the anion blockers 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid and 4 ,4′-diisothio-cyanatostilbene-2,2′-disulfonic acid both reduced, by 41 and 43%, respectively, the stimulatory effects of chloride. At concentrations of 100 Μ M , kynurenate, L-aspartate, ( RS )-Α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and L-2-amino-4-phosphonobutyric acid (L-APB) failed to displace quisqualate-sensitive L-[ 3 H]-glutamate binding in the cerebellar molecular layer. In the presence of KSCN, however, 100 Μ M AMPA displaced 44% of binding. Quisqualate-sensitive L-[ 3 H]glutamate binding was not sensitive to freezing, and, in contrast to other chloride- and calcium-dependent L-[ 3 H]glutamate binding sites that have been reported, quisqualate-sensitive binding observed by autoradiography was enhanced at 4°C compared with 37°C. Quisqualate-sensitive L-[ 3 H]glutamate binding likely represents binding to the subclass of postsynaptic neuronal glutamate receptors known as quisqualate receptors, rather than binding to previously described APB receptors, chloride-driven sequestration into vesicles, or binding to astrocytic membrane binding sites.en_US
dc.format.extent1119280 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1988 International Society for Neurochemistry Ltd.en_US
dc.subject.otherGlutamateen_US
dc.subject.otherQuisqualateen_US
dc.subject.otherReceptoren_US
dc.subject.otherAutoradiographyen_US
dc.subject.otherChlorideen_US
dc.subject.otherCalciumen_US
dc.titleProperties of Quisqualate-Sensitive L-[ 3 H]Glutamate Binding Sites in Rat Brain as Determined by Quantitative Autoradiographyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Neurology, University of Michigan, Ann Arbor, Michigan, U.S.A.;en_US
dc.contributor.affiliationotherNeuroscience Programen_US
dc.contributor.affiliationotherA/S Ferrosan, Research Division, Soeborg, Denmarken_US
dc.identifier.pmid2899133en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65464/1/j.1471-4159.1988.tb01062.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1988.tb01062.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBaudry M. and Lynch G. ( 1980 ) Regulation of hippocampal gluta-mate receptors: evidence for the involvement of a calcium-activated protease. Proc. Natl. Acad. Sci. USA 77, 2298 – 2302.en_US
dc.identifier.citedreferenceBaudry M. and Lynch G. ( 1984 ) The biochemistry of memory: a new and specific hypothesis. Science 224, 1057 – 1063.en_US
dc.identifier.citedreferenceBeaumont K., Maurin Y., Reisine T., Fields J. Z., Spokes E., Bird E. D., and Yamamura H. I. ( 1979 ) Huntington's disease and its animal model: alterations in kainic acid binding. Life Sci. 24, 809 – 816.en_US
dc.identifier.citedreferenceBeitz A. J., Larson A. A., Monaghan P. J., Altshuler R. A., Mullet M. A., and Madl J. E. ( 1986 ) Immunohistochemical localization of glutamate, glutaminase and aspartate aminotransferase in neurons of the pontine nuclei of the rat. Neuroscience 17, 741 – 753.en_US
dc.identifier.citedreferenceBridges R. J., Hearn T. J., Monaghan D. T., and Cotman C. W. ( 1986 ) A comparison of 2-amino-4-phosphonobutyric acid (AP4) receptors and [ 3 H]AP4 binding sites in the rat brain. Brain Res. 375, 204 – 209.en_US
dc.identifier.citedreferenceBridges R. J., Nieto-Sampedro M., Kadri M., and Cotman C. W. ( 1987 ) A novel chloride-dependent L-[ 3 H]glutamate binding site in astrocyte membranes. J. Neurochem. 48, 1709 – 1715.en_US
dc.identifier.citedreferenceCha J. J., Hollingsworth Z., Greenamyre J. T., Collins J., Penney J. B., and Young A. B. ( 1987 ) Possible contamination of quis-qualic acid by naturally occurring glutamic acid detected by quantitative autoradiographic binding assay and HPLC analysis. (Abstr) Soc. Neurosci. Abstr. 13, 1564.en_US
dc.identifier.citedreferenceCotman C. W. and Iversen L. L. ( 1987 ) Excitatory amino acids in the brain—focus on NMDA receptors. Trends Neurosci. 10, 263 – 265.en_US
dc.identifier.citedreferenceCotman C. W., Flatman J. A., Ganong A. H., and Perkins M. N. ( 1986 ) Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea-pig hippocampus. J. Physiol. (Lond.) 378, 403 – 415.en_US
dc.identifier.citedreferenceCroucher M. J., Meldrum B. S., Jones A. W., and Watkins J. C. ( 1984 ) Γ-D-Glutamylaminomethylsulphonic acid (GAMS), a kainate and quisqualate antagonist, prevents sound-induced seizures in DBA/2 mice. Brain Res. 322, 111 – 114.en_US
dc.identifier.citedreferenceCrunelli V., Forda S., and Kelly J. S. ( 1983 ) Blockade of amino acid-induced depolarizations and inhibition of excitatory post-synaptic potentials in rat dentate gyrus. J. Physiol (Lond.) 341, 627 – 640.en_US
dc.identifier.citedreferenceCull-Candy S. G. and Usowicz M. M. ( 1987 ) Multiple-conductance channels activated by excitatory amino acids in cerebel-lar neurons. Nature 325, 525 – 528.en_US
dc.identifier.citedreferenceDauth G. W., Frey K. A., and Gilman S. ( 1984 ) A densitometer for quantitative autoradiography. J. Neurosci. Methods 9, 241 – 253.en_US
dc.identifier.citedreferenceDavies J. and Watkins J. C. ( 1985 ) Depressant actions of Γ-D-glu-tamylaminomethyl sulfonate (GAMS) on amino acid-induced and synaptic excitation in the cat spinal cord. Brain Res. 327, 113 – 120.en_US
dc.identifier.citedreferenceDebowey D. L., Maragos W. F., Hollingsworth Z. H., Greenamyre J. T., Young A. B., and Penney J. B. ( 1987 ) Receptor changes in hippocampus of Alzheimer's disease. (Abstr) Soc. Neurosci. Abstr. 13, 439.en_US
dc.identifier.citedreferenceFagg G. E. and Foster A. C. ( 1983 ) Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9, 701 – 719.en_US
dc.identifier.citedreferenceFagg G. E. and Lanthorn T. H. ( 1985 ) Cl - /Ca 2+ -dependent L-glu-tamate binding sites do not correspond to 2-amino-4-phos-phonobutanoate-sensitive excitatory amino acid receptors. Br J. Pharmacol. 86, 743 – 751.en_US
dc.identifier.citedreferenceFagg G. E. and Matus A. ( 1984 ) Selective association of N -methyl aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities. Proc. Natl. Acad. Sci. USA 81, 6876 – 6880.en_US
dc.identifier.citedreferenceFagg G. E., Mena E. E., Monaghan D. T., and Cotman C. W. ( 1983 ) Freezing eliminates a specific population of L-glutamate receptors in synaptic membranes. Neurosci. Lett. 38, 157 – 162.en_US
dc.identifier.citedreferenceFoster A. C. and Fagg G. E. ( 1984 ) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7, 103 – 164.en_US
dc.identifier.citedreferenceFoster A. C. and Fagg G. E. ( 1987 ) Comparison of L-[ 3 H]-glutamate, d-[ 3 H]aspartate, dl-[ 3 H]AP5 and [ 3 H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur. J. Pharmacol. 133, 291 – 300.en_US
dc.identifier.citedreferenceFukuda H., Tanaka T., Kajima M., Nakai H., and Yonemasu Y. ( 1985 ) Quisqualic acid-induced hippocampal seizures in un-anesthetized cats. Neurosci. Lett. 59, 53 – 59.en_US
dc.identifier.citedreferenceGarthwaite G. and Garthwaite J. ( 1984 ) Differential sensitivity of rat cerebellar cells in vitro to the neurotoxic effects of excitatory amino acid analogues. Neurosci. Lett. 48, 361 – 367.en_US
dc.identifier.citedreferenceGarthwaite J., Garthwaite G., and Hajos F. ( 1986 ) Amino acid neurotoxicity: relationship to neuronal depolarization in rat cerebellar slices. Neuroscience 18, 449 – 460.en_US
dc.identifier.citedreferenceGiuffrida R. and Rustioni A. ( 1987 ) Glutamate immunoreactivity in cortico-cortical and corticofugal neurons of rats. (Abstr) Soc. Neurosci. Abstr. 13, 1562.en_US
dc.identifier.citedreferenceGreenamyre J. T., Young A. B., and Penney J. B. ( 1983 ) Quantitative autoradiography of L-[ 3 H]glutamate binding to rat brain. Neurosci. Lett. 37, 155 – 160.en_US
dc.identifier.citedreferenceGreenamyre J. T., Young A. B., and Penney J. B. ( 1984 ) Quantitative autoradiographic distribution of L-[ 3 H]glutamate-binding sites in rat central nervous system. J. Neurosci. 4, 2133 – 2144.en_US
dc.identifier.citedreferenceGreenamyre J. T., Olson J. M. M., Penney J. B., and Young A. B. ( 1985a ) Autoradiographic characterization of N -methyl-D-aspartate-, quisqualate- and kainate-sensitive glutamate binding sites. J. Pharmacol. Exp. Ther. 233, 254 – 263.en_US
dc.identifier.citedreferenceGreenamyre J. T., Penney J. B., Young A. B., D'Amato C. J., Hicks S. P., and Shoulson I. ( 1985b ) Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases. Science 227, 1496 – 1499.en_US
dc.identifier.citedreferenceGreenamyre J. T., Penney J. B., D'Amato C. J., and Young A. B. ( 1987a ) Dementia of the Alzheimer's type: changes in hippo-campal L-[ 3 H]glutamate binding. J. Neurochem. 48, 543 – 551.en_US
dc.identifier.citedreferenceGreenamyre T., Penney J. B., Young A. B., Hudson C., Silverstein F. S., and Johnston M. V. ( 1987b ) Evidence for transient perinatal glutamatergic innervation of globus pallidus. J. Neurosci. 7, 1022 – 1030.en_US
dc.identifier.citedreferenceHalpain S., Parsons B., and Rainbow T. C. ( 1983 ) Tritium-film autoradiography of sodium-independent glutamate binding sites in rat brain. Eur. J. Pharmacol. 86, 313 – 314.en_US
dc.identifier.citedreferenceHonorÉ T. and Nielsen M. ( 1985 ) Complex structure of quisqua-late-sensitive glutamate receptors in rat cortex. Neurosci. Lett. 54, 27 – 32.en_US
dc.identifier.citedreferenceJahr C. E. and Jessell T. M. ( 1985 ) Synaptic transmission between dorsal root ganglion and dorsal horn neurons in culture: antagonism of monosynaptic excitatory postsynaptic potentials and glutamate excitation by kynurenate. J. Neurosci. 5, 2281 – 2289.en_US
dc.identifier.citedreferenceJahr C. E. and Stevens C. F. ( 1987 ) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522 – 525.en_US
dc.identifier.citedreferenceKano M. and Kato M. ( 1987 ) Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325, 276 – 279.en_US
dc.identifier.citedreferenceKessler M., Petersen G., Vu H. M., Baudry M., and Lynch G. ( 1987 ) L-Phenylalanyl-L-glutamate-stimulated, chloride-dependent glutamate binding represents glutamate sequestration mediated by an exchange system. J. Neurochem. 48, 1191 – 1200.en_US
dc.identifier.citedreferenceKrogsgaard-Larsen P., HonorÉ T., Hansen J. J., Curtis D. R., and Lodge D. ( 1980 ) New class of glutamate agonist structurally related to ibotenic acid. Nature 285, 64 – 66.en_US
dc.identifier.citedreferenceMacDonald J. F. and Porietis A. V. ( 1982 ) DL-Quisqualic and l.-aspartic acids activate separate excitatory conductances in cultured spinal cord neurons. Brain Res. 245, 175 – 178.en_US
dc.identifier.citedreferenceMaragos W. F., Chu D. C. M., Greenamyre J. T., Penney J. B., and Young A. B. ( 1986 ) High correlation between the localization of [ 3 H]TCP binding and NMDA receptors. Eur. J. Pharmacol. 123, 173 – 174.en_US
dc.identifier.citedreferenceMcCaslin P. P. and Morgan W. W. ( 1987 ) Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function. Brain Res. 417, 380 – 384.en_US
dc.identifier.citedreferenceMena E. E., Pagnozzi M. J., and Gullak M. F. ( 1986 ) Characterization of L-glutamate binding sites in rat spinal cord synaptic membranes: evidence for multiple chloride ion-dependent sites. J. Neurochem. 47, 1052 – 1060.en_US
dc.identifier.citedreferenceMonaghan D. T., Holets V. R., Toy D. W., and Cotman C. W. ( 1983a ) Anatomical distributions of four pharmacologically distinct 3 H-L-glutamate binding sites. Nature 306, 176 – 179.en_US
dc.identifier.citedreferenceMonaghan D. T., McMills M. C., Chamberlin A. R., and Cotman C. W. ( 1983b ) Synthesis of [ 3 H]2-amino-4-phosphonobutyric acid and characterization of its binding to rat brain membranes: a selective ligand for the chloride/calcium-dependent class of L-glutamate binding sites. Brain Res. 278, 137 – 144.en_US
dc.identifier.citedreferenceMonaghan D. T., Yao D., and Cotman C. W. ( 1985 ) L-[ 3 H]-Glutamate binds to kainate-, NMDA-, and AMPA-sensitive binding sites: an autoradiographic analysis. Brain Res. 340, 378 – 383.en_US
dc.identifier.citedreferenceMunson P. J. and Rodbard D. ( 1980 ) LIGAND: a versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220 – 239.en_US
dc.identifier.citedreferenceMurphy D. E., Snowhill E. W., and Williams M. ( 1987 ) Characterization of quisqualate recognition sites in rat brain tissue using DL-[ 3 H]Α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and a filtration assay. Neurochem. Res. 12, 775 – 782.en_US
dc.identifier.citedreferenceNelson P. G., Pun R. Y. K., and Westbrook G. L. ( 1986 ) Synaptic excitation in cultures of mouse spinal cord neurones: receptor pharmacology and behaviour of synaptic currents. J. Physiol. (Lond.) 372, 169 – 190.en_US
dc.identifier.citedreferenceNicoletti F., Wroblewski J. T., Novelli A., Alho H., Guidotti A., and Costa E. ( 1986 ) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci. 6, 1905 – 1911.en_US
dc.identifier.citedreferenceOlson J. M. M., Greenamyre J. T., Penney J. B., and Young A. B. ( 1987 ) Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse. Neuroscience 22, 913 – 923.en_US
dc.identifier.citedreferencePan H. S., Frey K. F., Young A. B., and Penney J. B. ( 1983 ) Changes in [ 3 H]muscimol binding in substantia nigra, ento-peduncular nucleus, globus pallidus and thalamus after striatal lesions as demonstrated by quantitative autoradiography. J. Neurosci. 3, 1189 – 1198.en_US
dc.identifier.citedreferencePaxinos G. and Watson C. ( 1986 ) The Rat Brain in Stereotaxic Coordinates. Academic Press, Orlando, Florida.en_US
dc.identifier.citedreferencePin J.-P., Bockaert J., and Recasens M. ( 1984 ) The Ca 2+ /Cl - dependent L-[ 3 H]glutamate binding: a new receptor or a particular transport process ? FEBS Lett. 175, 31 – 36.en_US
dc.identifier.citedreferenceQuinn M. R. and Spraguer P. A. ( 1986 ) Chloride-dependent binding sites for L-[ 3 H]glutamate on dendrodendritic synapto-somal membranes of rat olfactory bulb. J. Neurosci. Res. 16, 409 – 419.en_US
dc.identifier.citedreferenceRecasens M., Pin J.-P., and Bockaert J. ( 1987 ) Chloride transport blockers inhibit the chloride-dependent glutamate binding to rat brain membranes. Neurosci. Lett. 74, 211 – 216.en_US
dc.identifier.citedreferenceRobinson M. B., Crooks S. L., Johnson R. L. and Koerner J. F. ( 1985 ) Displacement of DL-[ 3 H]-2-amino-4-phosphonobutan-oic acid ([ 3 H]APB) binding with methyl-substituted APB analogues and glutamate agonists. Biochemistry 24, 2401 – 2405.en_US
dc.identifier.citedreferenceRobinson M. B., Blakely R. D., and Coyle J. T. ( 1986 ) Quisqualate selectively inhibits a brain peptidase which cleaves N -acetyl-L-aspartyl-L-glutamate in vitro. Eur. J. Pharmacol. 130, 345 – 347.en_US
dc.identifier.citedreferenceRobinson M. B., Blakely R. D., Couto R., and Coyle J. T. ( 1987 ) Hydrolysis of the brain dipeptide N -acetyl-L-aspartyl-L-gluta-mate: identification and characterization of a novel N -acety-lated Α-linked acidic dipeptidase activity from rat brain. J. Biol. Chem. 262, 14498 – 14506.en_US
dc.identifier.citedreferenceSilverstein F. S., Chen R., and Johnston M. V. ( 1986 ) The glutamate analogue quisqualic acid is neurotoxic in striatum and hippocampus of immature rats. Neurosci. Lett. 71, 13 – 18.en_US
dc.identifier.citedreferenceSladeczek F., Pin J.-P., Recasens M., Bockaert J., and Weiss S. ( 1985 ) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317, 717 – 719.en_US
dc.identifier.citedreferenceWatkins J. C. and Evans R. H. ( 1981 ) Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165 – 204.en_US
dc.identifier.citedreferenceWatkins J. C. and Olverman H. J. ( 1987 ) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci. 10, 265 – 272.en_US
dc.identifier.citedreferenceYoung A. B., Oster-Granite M., Herndon R. M., and Snyder S. H. ( 1974 ) Glutamic acid: selective depletion by viral induced granule cell loss. Brain Res. 72, 1 – 13.en_US
dc.identifier.citedreferenceYoung A. B., Bromberg M. B., and Penney J. B. ( 1981 ) Decreased glutamate uptake in subcortical areas deafferented by sensori-motor cortical ablation in the cat. J. Neurosci. 1, 241 – 249.en_US
dc.identifier.citedreferenceZaczek R., Arlis S., Markl A., Murphy T., Drucker H., and Coyle J. T. ( 1987 ) Characteristics of chloride-dependent incorporation of glutamate into brain membranes argue against a receptor binding site. Neuropharmacology 26, 281 – 287.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.