Show simple item record

Immune Regulation in Allergic and Irritant Skin Reactions

dc.contributor.authorBaadsgaard, Oleen_US
dc.contributor.authorWang, Timothyen_US
dc.date.accessioned2010-04-01T15:02:15Z
dc.date.available2010-04-01T15:02:15Z
dc.date.issued1991-03en_US
dc.identifier.citationBaadsgaard, Ole; Wang, Timothy (1991). "Immune Regulation in Allergic and Irritant Skin Reactions." International Journal of Dermatology 30(3): 161-172. <http://hdl.handle.net/2027.42/65499>en_US
dc.identifier.issn0011-9059en_US
dc.identifier.issn1365-4632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65499
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2037400&dopt=citationen_US
dc.format.extent17139401 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1991 Blackwell Science Ltden_US
dc.titleImmune Regulation in Allergic and Irritant Skin Reactionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDermatologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Dermatology, Immunodermatology Unit, University of Michigan Medical School, Ann Arbor, Michigan.en_US
dc.identifier.pmid2037400en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65499/1/j.1365-4362.1991.tb03844.x.pdf
dc.identifier.doi10.1111/j.1365-4362.1991.tb03844.xen_US
dc.identifier.sourceInternational Journal of Dermatologyen_US
dc.identifier.citedreferenceSauder DN, Carter CS, Katz SI, et al. Epidermal cell production of thymocyte activating factor (ETAF). J Invest Dermatol. 1982 ; 79 : 34 – 39.en_US
dc.identifier.citedreferenceLuger TA, Stadler BM, Katz SI, et al. Epidermal cell (keratinocyte)-derived thymocyte-activating factor (ETAF). J Immunol. 1981 ; 127 : 1493 – 1498.en_US
dc.identifier.citedreferenceKupper TS, Ballard DW, Chua AO, et al. Human keratinocytes contain mRNA indistinguishable from monocyte interleukin I alpha and beta mRNA. J Exp Med. 1986 ; 164 : 2095 – 2100.en_US
dc.identifier.citedreferenceCooper KD, Baadsgaard O, Elder JT, et al. Increased levels of an interleukin–1 inhibitor block interleukin-1 activity but not immunoreactivity or mRNA expression of interleukin-1 beta in psoriasis skin (abstract). J Invest Dermatol. 1988 ; 90 : 552.en_US
dc.identifier.citedreferenceLuger TA, Wirth U, Kock A. Epidermal cells synthesize a cytokine with interleukin 3–like properties. J Immunol. 1985 : 134 : 915 – 919.en_US
dc.identifier.citedreferenceDanner M, Luger TA. Human keratinocytes and epidermoid carcinoma cell lines produce a cytokine with interleukin 3-like activity. J Invest Dermatol. 1987 ; 88 : 353 – 361.en_US
dc.identifier.citedreferenceChodakewitz JA, Kupper TS, Coleman DL. Keratinocyte-derived granulocyte/macrophage colony-stimulating factor induces DNA synthesis by peritoneal macrophages. J Immunol. 1988 ; 140 : 832 – 836.en_US
dc.identifier.citedreferenceLuger TA, Uchida A, Kock A, et al. Human epidermal cells and squamous carcinoma cells synthesize a cytokine that augments natural killer cell activity. J Immunol. 1985 ; 134 : 2477 – 2483.en_US
dc.identifier.citedreferenceKupper TS, May L, Birchall N, et al. Keratinocytes produce interleukin 6, a cytokine which can provide a 2nd signal in the activation of T-cells (abstract). Clin Res. 1988 ; 36 : 665.en_US
dc.identifier.citedreferenceNicolas JF, Kaiserlian D, Dardenne M, et al. Epidermal cell derived lymphocyte differentiating factor (ELDIF) inhibits in vitro lymphoproliferative responses and interleukin-2 production. J Invest Dermatol. 1987 ; 88 : 161 – 166.en_US
dc.identifier.citedreferenceNickoloff BJ, Basham TY, Merigan TC, et al. Cultured keratinocytes secrete a substance which inhibits allogeneic lymphocyte proliferation (abstract), J Invest Dermatol. 1985 ; 84 : 302.en_US
dc.identifier.citedreferenceNickoloff BJ, Basham TY, Torseth J, et al. Human keratinocyte-lymphocyte reactions in vitro. J Invest Dermatol. 1986 ; 87 : 11 – 18.en_US
dc.identifier.citedreferenceRola-Pleszczynski M. Differential effects of leukotriene B4 on T4+ and T8+ lymphocyte phenotype and immunoregulatory functions. J Immunol. 1985 ; 135 : 1357 – 1360.en_US
dc.identifier.citedreferenceHammerstrom S, Lindgren JA, Marcelo C, et al. Arachidonic acid transformations in normal and psoriatic skin. J Invest Dermatol. 1979 ; 73 : 180 – 183.en_US
dc.identifier.citedreferenceGrabbe J, Czarnetzki BM, Mardin M. Release of lipoxygenase products of arachidonic acid from freshly isolated human keratinocytes. Arch Dermatol Res. 1984 ; 276 : 128 – 130.en_US
dc.identifier.citedreferenceWalsh LJ, Lander PE, Seymour GJ, et al. Isolation and purification of ILS, an interleukin 1 inhibitor produced by human gingival epithelial cells. Clin Exp Immunol. 1987 ; 68 : 366 – 374.en_US
dc.identifier.citedreferenceNickoloff BJ. Keratinocytes produce a lymphocyte inhibitory factor which is partially reversible by an antibody to transforming growth factor-beta. Ann NY Acad Sci. 1988 ; 548 : 312 – 320.en_US
dc.identifier.citedreferenceZachariae C, Ternowitz T, Larsen CG, et al. Epidermal lymphocyte chemotactic factor specifically attracts OKT4-positive lymphocytes. Arch Dermatol Res. 1988 ; 280 : 354 – 357.en_US
dc.identifier.citedreferenceLarsen CG, Ternowitz T, Larsen FG, et al. Epidermis and lymphocyte interactions during an allergic patch test reaction: increased activity of ETAF/IL-1, epidermal derived lymphocyte chemotactic factor and mixed skin lymphocyte reactivity in persons with type IV allergy. J Invest Dermatol. 1988 ; 90 : 230 – 233.en_US
dc.identifier.citedreferenceLarsen CG, Ternowitz T, Larsen FG, et al. Epidermal derived lymphokines and their presence in allergic and irritant skin reactions (abstract). J Invest Dermatol. 1988 ; 91 : 405.en_US
dc.identifier.citedreferenceKupper TS, Chua AO, Flood P, et al. Interleukin-1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J Clin Invest. 1987 ; 80 : 430 – 436.en_US
dc.identifier.citedreferenceRistow HJ. A major factor contributing to epidermal proliferation in inflammatory skin diseases appears to be interleukin 1 or a related protein. Proc Natl Acad Sci USA. 1987 ; 84 : 1940 – 1944.en_US
dc.identifier.citedreferenceKupper TS, Lee F, Birchall N, et al. Interleukin 1 binds to specific receptors on human keratinocytes and induces granulocyte macrophage colony-stimulating factor mRNA and protein: a potential autocrine role of interleukin 1 in epidermis. J Clin Invest. 1988 ; 82 : 1787 – 1792.en_US
dc.identifier.citedreferenceNickoloff BJ. Keratinocytes produce a lymphocyte inhibitory factor which is partially reversible by an antibody to transforming growth factor-beta. Ann NY Acad Sci. 1988 ; 548 : 312 – 320.en_US
dc.identifier.citedreferenceKatz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature. 1979 ; 282 : 324.en_US
dc.identifier.citedreferenceStingl G, Katz SI, Clement L, et al. Immunologic functions of la-bearing epidermal Langerhans cells. J Immunol. 1978 ; 121 : 2005 – 2013.en_US
dc.identifier.citedreferenceBraathen LR. Studies on human epidermal Langerhans cells: III. induction of T lymphocyte response to nickel sulphate in sensitized individuals. Br J Dermatol., 1980 ; 103 : 517 – 526.en_US
dc.identifier.citedreferenceKlareskog L, Tjernlund UM, Forsum U, et al. Epidermal Langerhans cells express Ia antigens. Nature. 1977 ; 268 : 248 – 250.en_US
dc.identifier.citedreferenceRowden G, Lewis MG, Sullivan AK. Ia antigen expression on human epidermal Langerhans cells. Nature. 1977 ; 268 : 247 – 248.en_US
dc.identifier.citedreferenceFithian E, Kung P, Goldstein G, et al. Reactivity of Langerhans cells with hybridoma antibody. Proc Natl Acad Sci USA. 1981 ; 78 : 2541 – 2544.en_US
dc.identifier.citedreferenceRaz A, Wyche A, Siegel N, et al. Regulation of fibroblast cyclooxygenase synthesis by interleukin-1. J Biol Chem. 1988 ; 263 : 3022 – 3028.en_US
dc.identifier.citedreferenceDustin ML, Rothlein R, Bahn AK. Induction by IL–1 and interferon: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986 ; 137 : 245 – 254.en_US
dc.identifier.citedreferenceMarlin SD, Springer TA. Purified intercellular adhesion mole cule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen-l (LFA-1). Cell. 1987 ; 51 : 813 – 819.en_US
dc.identifier.citedreferenceKang S, Duraiswamy N, Crespo J, et al. Phenotype and antigen presenting cell function of murine dermal cells (abstract). Clin Res. 1987 ; 35 : 819.en_US
dc.identifier.citedreferenceCamussi G, Aglietta M, Coda R, et al. Release of platelet activating factor and histamine: II. the cellular origin of human PAF: monocytes, polymorphonuclear neutrophils, and basophils. Immunology., 1981 ; 42 : 191 – 199.en_US
dc.identifier.citedreferencePaterson NAM, Wasserman SI, Said JW, et al. Release of chemical mediators from partially purified human lung mast cells. J Immunol. 1976 ; 117 : 1356 – 1362.en_US
dc.identifier.citedreferenceAlhenc-Gelas F, Tsai SJ, Callahan KS, et al. Stimulation of prostaglandin formation by vasoactive mediators in cultured human endothelial cells. Prostaglandins. 1982 ; 24 : 723 – 742.en_US
dc.identifier.citedreferenceRocklin RE, Haberek-Davidson A. Histamine activates suppressor cells in vitro using a coculture technique. J Clin Immunol. 1981 ; 117 : 73 – 79.en_US
dc.identifier.citedreferenceShaw JO, Pinckard RN, Ferrigni KS, et al. Activation of human neutrophils with 1–0–hexadecyl/octadecyl-2–acetyl-snglycerol-3-phosphorylcholine; the active moiety of platelet activating factor. J Immunol. 1981 ; 127 : 1250 – 1255.en_US
dc.identifier.citedreferenceBos JD, Zonneveld IN, Das PK, et al. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol. 1987 ; 88 : 569 – 573.en_US
dc.identifier.citedreferenceMorgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976 ; 193 : 1007 – 1008.en_US
dc.identifier.citedreferenceHerberman RB, Ortaldo JR, Timonen T, et al. Interferon and natural killer (NK) cells. Tex Rep Biol Med. 1981 ; 41 : 590 – 595.en_US
dc.identifier.citedreferenceSuzuki R, Suzuki S, Takahashi T, et al. Production of a cytokine with interleukin 3–like properties and cytokine-dependent proliferation in human autologous mixed lymphocyte reaction. J Exp Med. 1986 ; 164 : 1682 – 1699.en_US
dc.identifier.citedreferenceSuzuki R, Suzuki S, Igarashi M, et al. Induction of interleukin 3 but not interleukin 2 or interferon production in the syngeneic mixed lymphocyte reaction. J Immunol. 1986 ; 137 : 1564 – 1572.en_US
dc.identifier.citedreferencePaliard X, de Waal MR, Yssel H, et al. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J Immunol. 1988 ; 141 : 849 – 855.en_US
dc.identifier.citedreferenceLee K, Yokota T, Otsuka T, et al. Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells. Proc Natl Acad Sci USA. 1985 ; 82 : 4360 – 4364.en_US
dc.identifier.citedreferenceLee K, Yokota T, Otsuka T, et al. Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell and mast cell stimulating activities. Proc Natl Acad Sci USA. 1986 ; 83 : 2061 – 2065.en_US
dc.identifier.citedreferencePtak W, Rozycka D, Askenase PW, et al. Role of antigen-presenting cells in the development and persistence of contact hypersensitivity. J Exp Med. 1980 ; 151 : 362 – 375.en_US
dc.identifier.citedreferenceAsherson GL, Ptak W. Contact and delayed hypersensitivity in the mouse: I. active sensitization and passive transfer. Immunology., 1968 ; 15 : 405 – 416.en_US
dc.identifier.citedreferenceMarchal G, Seman M, Milon G, et al. Local adoptive transfer of skin delayed-type hypersensitivity initiated by a single T lymphocyte. J Immunol. 1982 ; 129 : 954 – 958.en_US
dc.identifier.citedreferenceScheper RJ, Ans CHM, Dinther-Janssen V, et al. Specific accumulation of hapten-reactive T cells in contact sensitivity reaction sites. J Immunol. 1985 ; 134 : 1333 – 1336.en_US
dc.identifier.citedreferencePehamberger H, Stingl LA, Pogantsch S, et al. Epidermal cell induced generation of cytotoxic T lymphocyte responses against alloantigens or TNP-modified syngeneic cells: requirement for Ia-positive Langerhans cells. J Invest Dermatol. 1983 ; 81 : 208 – 211.en_US
dc.identifier.citedreferenceTamaki K, Fujiwara H, Levy RB. Hapten-specific TNP-reactive cytotoxic effector cells using epidermal cells as targets. J Invest Dermatol. 1981 ; 77 : 225 – 229.en_US
dc.identifier.citedreferenceKalish RS, Morimoto C. Urushiol (poison ivy)-triggered suppressor T cell clone generated from peripheral blood. J Clin Invest. 1988 ; 82 : 825 – 832.en_US
dc.identifier.citedreferenceClaman HN, Miller SD, Sy MS, et al. Suppressive mechanisms involving sensitization and tolerance in contact allergy. Immunol Rev. 1980 ; 50 : 105 – 132.en_US
dc.identifier.citedreferenceSilberberg-Sinakin I, Thorbecke GJ, Baer RL, et al. Antigenbearing Langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell Immunol. 1976 ; 25 : 137 – 151.en_US
dc.identifier.citedreferenceRomani N, Koide S, Crowley M, et al. Presentation of exogenous protein antigens by dendritic cells to T epidermal Langerhans cells. J Exp Med. 1989 ; 169 : 1169 – 1178.en_US
dc.identifier.citedreferenceSauder D, Tamaki K, Moshell A, et al. Induction of tolerance to topically applied TNCB using TNCB-conjugated ultraviolet light-irradiated epidermal cells. J Immunol. 1981 ; 127 : 261 – 263.en_US
dc.identifier.citedreferenceNoonan FP, Kripke ML, Pedersen GM, et al. Suppression of contact hypersensitivity in mice by ultraviolet irradiation is associated with defective antigen presentation. Immunology. 1981 ; 43 : 527 – 533.en_US
dc.identifier.citedreferenceToews G, Bergstresser P, Streilein J, et al. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol. 1980 ; 124 : 445 – 453.en_US
dc.identifier.citedreferenceGriffiths CE, Voorhees JJ, Nickoloff BJ. Characterization of intercellular adhesion molecule-1 and HLA-DR expression in normal and inflamed skin: modulation by recombinant gamma interferon and tumor necrosis factor. J Am Acad Dermatol. 1989 ; 20 : 617 – 629.en_US
dc.identifier.citedreferenceBaadsgaard O, Hansen E, Elder JT, et al. UM4D4 the surface molecule of an antigen independent T cell activation pathway in psoriasis. New York : Alan R. Liss, Inc, 1989 : 469.en_US
dc.identifier.citedreferencevan Loveren H, Meade R, Askenase PW. An early component of delayed-type hypersensitivity mediated by T cells and mast cells. J Exp Med. 1983 ; 157 : 1604 – 1617.en_US
dc.identifier.citedreferenceHancock GE, Kaplan G, Cohn ZA. Keratinocyte growth regulation by the products of immune cells. J Exp Med. 1988 ; 168 : 1395 – 1402.en_US
dc.identifier.citedreferenceLisby S, Baadsgaard O, Avnstorp C, et al. Irritant skin reactions demonstrate, in contrast to allergic reactions, decreased number and function of epidermal T6+DR+ Langerhans cells (abstract). J Invest Dermatol. 1988 ; 91 : 405.en_US
dc.identifier.citedreferenceGawkrodger DJ, Mc Vittie E, Carr MN, et al. Phenotypic characterization of the early cellular responses in allergic and irritant contact dermatitis. Clin Exp Immunol. 1986 ; 66 : 590 – 598.en_US
dc.identifier.citedreferenceChristensen OB, Daniels TE, Maibach HI. Expression of OKT6 antigen by Langerhans cells in patch test reactions. Contact Dermatitis. 1986 ; 14 : 26 – 31.en_US
dc.identifier.citedreferenceBaadsgaard O, Lisby S, Avnstorp C, et al. Antigen-presenting activity of non-Langerhans epidermal cells in contact hypersensitivity reactions. Scand J. Immunol., 1990 ; 32 : 217 – 224.en_US
dc.identifier.citedreferenceBasham TY, Nickoloff BJ, Merigan TC, et al. Recombinant gamma interferon induces HLA-DR expression on cultured human keratinocytes. J Invest Dermatol. 1984 ; 83 : 88 – 90.en_US
dc.identifier.citedreferenceVolc-Platzer B, Majdic O, Knapp W, et al. Evidence of HLA-DR antigen biosynthesis by human keratinocytes in disease. J Exp Med. 1984 ; 159 : 1784 – 1789.en_US
dc.identifier.citedreferenceLampert IA. Expression of HLA-DR (la like) antigen on epidermal keratinocytes in human dermatoses. Clin Exp Immunol. 1984 ; 57 : 93 – 100.en_US
dc.identifier.citedreferenceGaspari AA, Katz SI. Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes. J Immunol. 1988 ; 140 : 2956 – 2963.en_US
dc.identifier.citedreferenceSy MS, Miller SD, Claman HN. Immune suppression with supraoptimal doses of antigen in contact sensitivity: I. demonstration of suppressor cells and their sensitivity to cyclophosphamide. J Immunol., 1977 ; 119 : 240 – 244.en_US
dc.identifier.citedreferenceTamaki K, Fujiwara H, Katz SI. The role of epidermal cells in the induction and suppression of contact sensitivity. J Invest Dermatol. 1981 ; 76 : 275 – 278.en_US
dc.identifier.citedreferenceMiller SD, Claman HN. The induction of hapten-specific T cell tolerance by using hapten-modified lymphoid cells: I. characteristics of tolerance induction. J Immunol., 1978 ; 117 : 1519 – 1526.en_US
dc.identifier.citedreferenceKligman AM. Hyposensitization against rhus dermatitis. Arch Dermatol. 1958 ; 78 : 47.en_US
dc.identifier.citedreferenceSommer G, Parker D, Turk JL. Epicutaneous induction of hyperactivity in contact sensitization: demonstration of suppressor cells induced by contact with 2–4-dinitrothiocyanatebenzene. Immunology. 1975 ; 29 : 517 – 525.en_US
dc.identifier.citedreferenceIijima M, Katz SI. Specific immunologic tolerance to dinitrofluorobenzene following topical application of dinitrothiocyanobenzene: modulation by suppressor T cells. J Invest Dermatol. 1983 ; 81 : 325 – 330.en_US
dc.identifier.citedreferenceGaspari A, Jenkins M, Katz SI. Class II MHC-bearing keratinocytes induce antigen-specific unresponsiveness in haptenspecific TH1 clones. J Immunol. 1988 ; 141 : 2216 – 2220.en_US
dc.identifier.citedreferenceRobertson B, Gahring L, Newton R, et al. In vivo administration of interleukin 1 to normal mice depresses their capacity to elicit contact hypersensitivity responses: prostaglandins are involved in this modification of immune function. J Invest Dermatol. 1987 ; 88 : 380 – 387.en_US
dc.identifier.citedreferenceGranstein RD, Lowy A, Greene MI. Epidermal antigen-presenting cells in activation of suppression: identification of a new functional type of ultraviolet radiation-resistant epidermal cell. J Immunol. 1985 ; 132 : 563 – 565.en_US
dc.identifier.citedreferenceGranstein RD. Epidermal I-J bearing cells are responsible for transferable suppressor cell generation after immunization of mice with ultraviolet radiation-treated epidermal cells. J Invest Dermatol. 1985 ; 84 : 206 – 209.en_US
dc.identifier.citedreferenceBreathnach SM, Katz SI. Thy-1+ dendritic cells in murine epidermis are bone marrow-derived. J Invest Dermatol. 1984 ; 83 : 74 – 77.en_US
dc.identifier.citedreferenceBergstresser P, Tigelaar RE, Dees JH, et al. Thy-1 antigen bearing dendritic cells populate murine epidermis. J Invest Dermatol. 1983 ; 81 : 286 – 288.en_US
dc.identifier.citedreferenceBergstresser P, Tigelaar RE, Streilein JW. Thy-1 antigen bearing dendritic cells in murine epidermis are derived from bone marrow precursors. J Invest Dermatol. 1984 ; 83 : 83 – 87.en_US
dc.identifier.citedreferenceTschachler E, Schuler G, Hutterer J, et al. Expression of Thy-1 antigen by murine epidermal cells. J Invest Dermatol. 1983 ; 81 : 282 – 285.en_US
dc.identifier.citedreferenceKoning F, Stingl G, Yokoyama WM, et al. Identification of a T3–associated gamma-delta T cell receptor on Thy-1+ dendritic epidermal cell lines. Science. 1987 ; 236 : 834 – 837.en_US
dc.identifier.citedreferenceStingl G, Konig F, Yamada H, et al. Thy-1+ dendritic epidermal cells express T3 and the T-cell receptor gamma chain. Proc Natl Acad Sci USA. 1987 ; 84 : 4586 – 4590.en_US
dc.identifier.citedreferenceJuziel WA, Takashima A, Bonyhadi M, et al. Regulation of T-cell receptor gamma-chain RNA expression in murine Thy-1+ dendritic epidermal cells. Nature. 1987 ; 328 : 263 – 266.en_US
dc.identifier.citedreferenceSullivan S, Bergstresser P, Tigelaar RE, et al. Induction and regulation of contact hypersensitivity by resident, bone marrow-derived, dendritic epidermal cells: Langerhans cells and Thy-1+ epidermal cells. J Immunol. 1986 ; 137 : 2460 – 2467.en_US
dc.identifier.citedreferenceShen HH, Talle MA, Goldstein G, et al. Functional subsets of human monocytes defined by monoclonal antibodies: a distinct subset of monocytes contain the cells capable of inducing the autologous mixed lymphocyte culture. J Immunol. 1983 ; 130 : 698 – 705.en_US
dc.identifier.citedreferenceSmith JB, Knowlton RP. Activation of suppressor T cells in human autologous mixed lymphocyte culture. J Immunol. 1979 ; 123 : 419 – 422.en_US
dc.identifier.citedreferenceJames SP, Yenokida GG, Graeff AS, et al. Immunoregulatory function of T cells activated in the autologous mixed lymphocyte reaction. J Immunol. 1981 ; 127 : 2605 – 2609.en_US
dc.identifier.citedreferenceLisby S, Baadsgaard O, Cooper KD, et al. Decreased number and function of epidermal antigen presenting cells in the skin following application of irritant agents: relevance to cutaneous tumors ? J Invest Dermatol. 1989 ; 92 : 842 – 847.en_US
dc.identifier.citedreferenceBurrows WM, Stoughton RB. Inhibition of induction of human contact sensitization by topical glucocorticosteroids. Arch Dermatol. 1976 ; 112 : 175 – 178.en_US
dc.identifier.citedreferenceLynch DH, Gurish MF, Daynes RA. Relationship between epidermal Langerhans cell density ATPase activity and the induction of contact hypersensitivity. J Immunol. 1981 ; 126 : 1892 – 1897.en_US
dc.identifier.citedreferenceLarsson EL. Cyclosporine A and dexamethasone suppress T cell responses by selectively acting at distinct sites of the trig gering process. J Immunol. 1980 ; 124 : 2828 – 2833.en_US
dc.identifier.citedreferenceAberer W, Stingl L, Pogantsch S, et al. Effect of glucocorticosteroids on epidermal cell-induced immune responses. J Immunol. 1984 ; 133 : 792 – 797.en_US
dc.identifier.citedreferenceAshworth J, Booker J, Breathnach SM. Effects of topical corticosteroid therapy on Langerhans cell antigen presenting function in human skin. Br J Dermatol. 1988 ; 118 : 457 – 469.en_US
dc.identifier.citedreferenceBelsito DV, Flotte TJ, Lim HW, et al. Effect of glucocorticosteroids on epidermal Langerhans cells. J Exp Med. 1982 ; 155 : 291 – 302.en_US
dc.identifier.citedreferenceAberer G, Schuler G, Stingl G, et al. Ultraviolet light depletes surface markers of Langerhans cells. J Invest Dermatol. 1981 ; 76 : 202 – 210.en_US
dc.identifier.citedreferenceStingl G, Gazze-Stingl LA, Aberer W, et al. Antigen presentation by murine epidermal Langerhans cells and its alteration by ultraviolet B light. J Immunol. 1981 ; 127 : 1707 – 1713.en_US
dc.identifier.citedreferenceCooper KD, Neises GR, Katz SI. Antigen-presenting 0KM5+ melanophages appear in human epidermis after ultraviolet radiation. J Invest Dermatol. 1986 ; 86 : 363 – 370.en_US
dc.identifier.citedreferenceCooper KD, Fox PF, Katz SI. Effects of ultraviolet radiation on human epidermal cell alloantigen presentation; initial depression of Langerhans cell function is followed by the appearance of T6–DR+ cells which enhance epidermal alloantigen presentation. J Immunol. 1984 ; 134 : 129 – 137.en_US
dc.identifier.citedreferenceBaadsgaard O, Cooper KD, Lisby S, et al. Dose response and time course for induction of T6–DR+ human epidermal antigen presenting cells by in vivo UVA, UVB and UVC irradiation. J Am Acad Dermatol. 1987 ; 17 : 792 – 800.en_US
dc.identifier.citedreferenceBaadsgaard O, Wulf HC, Wantzin GL, et al. UVB and UVC, but not UVA, potently induce the appearance of T6–DR+ antigen-presenting cells in human epidermis. J Invest Dermatol. 1987 ; 89 : 113 – 118.en_US
dc.identifier.citedreferenceMorimoto C, Letvin N, Boyd A, et al. The isolation and characterization of the human helper inducer subset. J Immunol. 1985 ; 134 : 3762 – 3769.en_US
dc.identifier.citedreferenceMorimoto C, Letvin N, Distaso J, et al. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol. 1985 ; 134 : 1508 – 1515.en_US
dc.identifier.citedreferenceBaadsgaard O, Fox DA, Cooper KD. Human epidermal cells from ultraviolet light-exposed skin potently activate autoreactive CD4+2H4+ suppressor-inducer lymphocytes and CD8+ suppressor/cytotoxic lymphocytes. J Immunol. 1988 ; 140 ; 1738 – 1744.en_US
dc.identifier.citedreferenceBaadsgaard O, Salvo B, Mannie A, et al. In vivo ultraviolet-exposed human epidermal cells activate T suppressor cell path ways that involve CD4+ CD4SRA+ suppressor-inducer T cells. J Immunol. 1990 ; 145 ; 2854 – 2861.en_US
dc.identifier.citedreferenceElmets A, Bergstresser P, Tigelaar RE, et al. Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low-dose ultraviolet irradiation. J Exp Med. 1983 ; 158 : 781 – 794.en_US
dc.identifier.citedreferenceNoonan FP, Bucana C, Sauder DN, et al. Mechanism of systemic immune suppression by UV irradiation in vivo. J Immunol. 1984 ; 132 : 2408 – 2416.en_US
dc.identifier.citedreferenceEllis CN, Gorsulowsky DC, Hamilton TA, et al. Cyclosporine improves psoriasis in a double-blind study. JAMA. 1986 ; 256 ; 3110 – 3116.en_US
dc.identifier.citedreferenceHess AD, Tutschka PJ, Santos GW. Effect of cyclosporin A on human lymphocyte responses in vitro. J Immunol. 1981 ; 126 : 961 – 968.en_US
dc.identifier.citedreferenceReem GH, Cook LA. Gamma interferon synthesis by human thymocytes and T lymphocytes inhibited by cyclosporin A. Science. 1983 ; 221 : 63 – 65.en_US
dc.identifier.citedreferenceShevach EM. The effects of cyclosporin A on the immune system. Ann Rev Immunol. 1985 ; 3 : 397 – 423.en_US
dc.identifier.citedreferenceOrosz CG, Fidelus RK, Roopenian DC, et al. Analysis of cloned T cell function; I. dissection of cloned T cell proliferative responses using cyclosporin A. J Immunol., 1982 ; 129 : 1865 – 1868.en_US
dc.identifier.citedreferenceLeapman SB, Filo RS, Smith EJ, et al. In vitro effects of cyclosporin A on lymphocyte subpopulations. Transplantation. 1980 ; 30 : 404 – 408.en_US
dc.identifier.citedreferenceBraida M, Knop J. Effect of cyclosporin A on the T-effector and T-suppressor cell response in contact sensitivity. Immunology. 1986 ; 59 : 503 – 507.en_US
dc.identifier.citedreferenceNakagawa S, Oka D, Jinno Y, et al. Topical application of cyclosporine on guinea pig allergic contact dermatitis. Arch Dermatol. 1988 ; 124 : 907 – 910.en_US
dc.identifier.citedreferenceAldridge RD, Sewell HF, King G, et al. Topical cyclosporin A in nickel contact hypersensitivity; results of a preliminary clinical and immunohistochemical investigation. Clin Exp Immunol. 1986 ; 66 : 582 – 589.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.