Show simple item record

High-Frequency Electromagnetic Bandgap Structures via Indirect Solid Freeform Fabrication

dc.contributor.authorReilly, Christopher J.en_US
dc.contributor.authorChappell, William J.en_US
dc.contributor.authorHalloran, John W.en_US
dc.contributor.authorKatehi, Linda P. B.en_US
dc.date.accessioned2010-04-01T15:02:19Z
dc.date.available2010-04-01T15:02:19Z
dc.date.issued2004en_US
dc.identifier.citationReilly, Christopher J.; Chappell, William J.; Halloran, John W.; Katehi, Linda P. B. (2004). "High-Frequency Electromagnetic Bandgap Structures via Indirect Solid Freeform Fabrication." Journal of the American Ceramic Society 87(8): 1446-1453. <http://hdl.handle.net/2027.42/65500>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65500
dc.format.extent1679940 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherAmerican Ceramics Societyen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rights2004 The American Ceramics Societyen_US
dc.subject.otherElectromagnetic Propertiesen_US
dc.subject.otherFabricationen_US
dc.subject.otherAluminaen_US
dc.titleHigh-Frequency Electromagnetic Bandgap Structures via Indirect Solid Freeform Fabricationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAdvanced Ceramics Laboratory, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48108en_US
dc.contributor.affiliationumRadiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48108en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65500/1/j.1551-2916.2004.01446.x.pdf
dc.identifier.doi10.1111/j.1551-2916.2004.01446.xen_US
dc.identifier.sourceJournal of the American Ceramic Societyen_US
dc.identifier.citedreferenceE. Yablonovitch, “ Inhibited Spontaneous Emission in Solid State Physics and Electronics,” Phys. Rev. Lett., 58, 20 2059 – 62 ( 1987 ).en_US
dc.identifier.citedreferenceE. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulous, “ Donor and Acceptor Modes in Photonic Band Structure,” Phys, Rev. Lett., 67, 3380 1991.en_US
dc.identifier.citedreferenceE. Yablonovitch and T. J. Gmitter, “ Photonic Band Structure: The Face Centered Cubic Case,” Phys. Rev. Lett., 63, 18, 1950 – 53 ( 1989 ).en_US
dc.identifier.citedreferenceE. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “ Defect Structures in a Layer by Layer Photonic Band Gap Crystal,” Phys. Rev. B, 51, 20 1995.en_US
dc.identifier.citedreferenceE. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “ Measurement of a Three-Dimensional Photonic Band Gap in a Crystal Structure Made of Dielectric Rods,” Phys. Rev. B, 50 [ 3 ] 1945 – 48 1994.en_US
dc.identifier.citedreferenceE. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalis, and K. M. Ho, “ Micromachined Millimeter-Wave Photonic Band-Gap Crystals,” Appl. Phys. Lett., 64, [ 16 ] 2059 – 61 ( 1994 ).en_US
dc.identifier.citedreferenceS. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalis, W. Zubrzycki, and S. R. Kurtz, “ A Three Dimensional Photonic Crystal Operating at Infrared Wavelengths,” Nature (London), 394, 251 – 53 1998.en_US
dc.identifier.citedreferenceW. J. Chappell, M. P. Little, and L. P. B. Katehi, “ High Q Two-Dimensional Defect Resonators: Measured and Simulated,” IEEE MTT-S Int. Microwave Symp Dig., 3, 1437 – 40 2000.en_US
dc.identifier.citedreferenceW. J. Chappell, C. J. Reilly, J. W. Halloran, L. P. B. Katehi, “ Ceramic Sythetic Substrates Using Sold Free Form Fabrication,” IEEE Transactions on Microwave Theory Tech., 51 [ 3 ] ( 2003 ).en_US
dc.identifier.citedreferenceM. Mott and J. G. Evans, “ Solid Freeforming of Silicon Carbide by Inkjet Printing Using a Polymeric Precursor,” J. Am. Ceram. Soc., 84 [ 2 ] 307 – 13 2001.en_US
dc.identifier.citedreferenceK. A. M. Seerden, N. Reis, B. Derby, P. S. Grant, J. W. Halloran, and J. R. G. Evans, “ Direct Ink-jet Deposition of Ceramic Green Bodies: I-Formulation of Build Materials ”; pp. 141 – 46 in Symposium V, Solid Freeform and Additive Fabrication, Proceedings of the Materials Research Society Fall Meeting, Boston, MA, 1998 ; The Materials Research Society : Warrendale, PA, 1999.en_US
dc.identifier.citedreferenceM. J. Wright and J. G. Evans, “ Ceramic Deposition Using an Electromagnetic Jet Printer Station,” J. Mater. Sci. Lett., 18 [ 2 ] 99 – 101 ( 2001 ).en_US
dc.identifier.citedreferenceM. Mott, J.-H. Song, and J. G. Evans, “ Microengineering of Ceramics by Direct Ink-Jet Printing,” J. Am. Ceram. Soc., 82 [ 7 ] 1653 – 58 ( 1999 ).en_US
dc.identifier.citedreferenceT. McNulty, D. Shanefield, S. Danforth, and A. Safari, “ Dispersion of Lead Zirconate Titanate for Fused Deposition of Ceramics,” J. Am. Ceram. Soc. 82 [ 7 ] 1757 – 60 ( 1999 ).en_US
dc.identifier.citedreferenceA. Bandyopadhyay, R. K. Panda, V. F. Agarwala, S. C. Danforth, and A. Safari, “ Processing of Piezocomposites by Fused Deposition Technique,” J. Am. Ceram. Soc., 80 [ 6 ] 1366 – 72 1997.en_US
dc.identifier.citedreferenceK. Venkataswamy, R. Waack, B. E. Novich, and J. W. Halloran, “ Forming Whisker Reinforced Sintered Ceramics with Polymerizable Binder Precursors,” U. S. Pat. No. 4 978 643, 1990.en_US
dc.identifier.citedreferenceT.-M. Chu, “ Solid Freeform Fabrication of Biomaterials,” Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1999.en_US
dc.identifier.citedreferenceC. Young, O. O. Omatete, M. A. Janney, and P. A. Menchhofer, “ Gelcasting of Alumina,” J. Am. Ceram. Soc., 74 [ 3 ] 612 1991.en_US
dc.identifier.citedreferenceT-C. Chu and J. W. Halloran, “ Curing of Highly Loaded Ceramic Suspension in Acrylates,” J. Am. Ceram. Soc. 83 [ 10 ] 2375 – 80 ( 2000 ).en_US
dc.identifier.citedreferenceK. S. Anseth and C. N. Bowman, “ Kinetic Gelation Model Prediction of Crosslinked Polymer Network Microstructure,” Chem. Eng. Sci., 49 [ 14 ] 2207 1994.en_US
dc.identifier.citedreferenceI. M. Krieger and T. J. Dougherty, “ A Mechanism for Non-Newtonian Flow in Suspension of Rigid Spheres,” Trans. Soc. Rheol., 3, 137 – 52 1959.en_US
dc.identifier.citedreferenceH. Barnes, J. Hutton, and K. Walters, “ Rheology of Suspensions,” pp. 115 – 39 in An Introduction to Rheology. Edited by H. Barnes. Elsevier, New York, 1989.en_US
dc.identifier.citedreferenceL. Bergstrom, “ Rheology of Concentrated Suspensions,” pp. 193 – 239 in Surface and Colloid Chemistry in Advanced Ceramic Processing. Edited by R. J. Pugh and L. Bergstrom. Marcel Dekker, New York, 1994.en_US
dc.identifier.citedreferenceT.-M. Chu and J. W. Halloran,“ High Temperature Flow Behavior of Ceramic Suspensions,” J. Am. Ceram. Soc., 83, [ 9 ] 2189 – 95 ( 2000 ).en_US
dc.identifier.citedreferenceD. Richerson, Modern Ceramic Engineering, Marcel Dekker, New York, 1992.en_US
dc.identifier.citedreferenceW. J. Chappell, M. P. Little, and L. P. B. Katehi, “ High Isolation, Planar Filters Using EBG Substrates,” IEEE Microwave Wireless and Components Lett., 11 [ 6 ] 246 – 48 2001.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.