Show simple item record

Excitotoxic Brain Injury Suppresses Striatal High-Affinity Glutamate Uptake in Perinatal Rats

dc.contributor.authorHu, Bernadineen_US
dc.contributor.authorMcDonald, John W.en_US
dc.contributor.authorJohnston, Michael V.en_US
dc.contributor.authorSilverstein, Faye Sarahen_US
dc.date.accessioned2010-04-01T15:05:32Z
dc.date.available2010-04-01T15:05:32Z
dc.date.issued1991-03en_US
dc.identifier.citationHu, Bernadine; McDonald, John W.; Johnston, Michael V.; Silverstein, Faye S. (1991). "Excitotoxic Brain Injury Suppresses Striatal High-Affinity Glutamate Uptake in Perinatal Rats." Journal of Neurochemistry 56(3): 933-937. <http://hdl.handle.net/2027.42/65556>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65556
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1671587&dopt=citationen_US
dc.description.abstractIn immature rodent brain, the glutamate receptor agonist N -methyl-D-aspartate (NMDA) is a potent neurotoxin. In postnatal day (PND)-7 rats, intrastriatal injection of 25 nmol of NMDA results in extensive ipsilateral forebrain injury. In this study, we examined alterations in high-affinity [ 3 H]glutamate uptake (HAGU) in NMDA-lesioned striatum. HAGU was assayed in synaptosomes, prepared from lesioned striatum, the corresponding contralateral striatum, or unlesioned controls. Twenty-four hours after NMDA injection (25 nmol), HAGU declined 44 ± 8% in lesioned tissue, compared with the contralateral striatum (mean ± SEM, n = 6 assays, p < 0.006, paired t test). Doses of 5–25 nmol of NMDA resulted in increasing suppression of HAGU (5 nmol, n = 3; 12.5 nmol, n = 3; and 25 nmol, n = 5 assays; p < 0.01, regression analysis). The temporal evolution of HAGU suppression was biphasic. There was an early transient suppression of HAGU (−28 ± 4% at 1 h; p < 0.03, analysis of variance, comparing changes at 0.5, 1, 2, and 3 h after lesioning); 1 or 5 days postinjury there was sustained loss of HAGU (at 5 days, −56 ± 11%, n = 3, p < 0.03, paired t test, lesioned versus contralateral striata). Treatment with the noncompetitive NMDA antagonist MK-801 (1 mg/kg i.p.) attenuated both the early and subsequent irreversible suppression of HAGU (1 h postlesion −28 ± 4%, n = 6 assays versus −12.6 ± 5% with MK-801, n = 4, p = 0.005; 24 h postlesion, −44 ± 8%, n = 5, versus +2.4 ± 6%, n = 3 with MK-801, p = 0.01, Wilcoxon ranked sum tests). In immature brain excitotoxic lesions produce an acute reversible suppression of HAGU, and a delayed long-lasting reduction in HAGU secondary to brain injury. These data suggest that accumulation of endogenous glutamate, as a consequence of the acute disruption of HAGU, could contribute to the pathogenesis of excitotoxic neuronal injury.en_US
dc.format.extent585436 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1991 International Society for Neurochemistry Ltd.en_US
dc.subject.otherPerinatalen_US
dc.subject.otherN -Methyl-D-Aspartateen_US
dc.subject.otherGlutamateen_US
dc.subject.otherStriatumen_US
dc.subject.otherUptakeen_US
dc.subject.otherInjuryen_US
dc.titleExcitotoxic Brain Injury Suppresses Striatal High-Affinity Glutamate Uptake in Perinatal Ratsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Pediatrics and Neurology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationum* The Neuroscience and Medical Scientist Training Program, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationother† Departments of Neurology and Pediatrics, Johns Hopkins University and The Kennedy Research Institute, Baltimore, Maryland, U.S.A.en_US
dc.identifier.pmid1671587en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65556/1/j.1471-4159.1991.tb02011.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1991.tb02011.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBarbour B., Szatkowki M., Ingleden N., and Attwell T. ( 1989 ) Arachidonic acid induced a prolonged inhibition of glutamate uptake into glial cells. Nature 342, 918 – 920.en_US
dc.identifier.citedreferenceBennett J. P., Logan W. J., and Snyder S. H. ( 1973 ) Amino acids as central nervous system transmitters: the influence of ions, amino acid analogues, and ontogeny on transport systems for L-glutamic and L-aspartic acids and glycine into central nervous synaptosomes of the rat. J. Neurochem. 21, 1533 – 1550.en_US
dc.identifier.citedreferenceBradford M. ( 1976 ) A rapid, sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 – 253.en_US
dc.identifier.citedreferenceChan P. H., Kerlan R. A., and Fishman R. A. ( 1983 ) Reductions of GABA and glutamate uptake and Na + + K + -ATPase activity in brain slices and synaptosomes by arachidonic acid. J. Neurochem. 40, 309 – 316.en_US
dc.identifier.citedreferenceCampochiaro P. and Coyle J. ( 1978 ) Ontogenetic development of kainate neurotoxicity: correlates with glutamatergic innervation. Proc. Natl. Acad. Sci. USA 75, 2025 – 2029.en_US
dc.identifier.citedreferenceCoyle J. T. and Schwarcz R. ( 1976 ) Lesion of striatal neurons with kainic acid provides a model for Huntington's chorea. Nature 263, 244 – 246.en_US
dc.identifier.citedreferenceCoyle J. T., Molliver M. E., and Kuhar M. J. ( 1978 ) In situ injection of kainic acid: a new method for selectively lesioning neuronal cell bodies while sparing axons of passage. J. Comp. Neurol. 180, 301 – 324.en_US
dc.identifier.citedreferenceDumuis A., Sebben M., Haynes L., Pin J. P., and Bockaert J. ( 1988 ) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336, 68 – 70.en_US
dc.identifier.citedreferenceFonnum F. ( 1984 ) Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42, 1 – 11.en_US
dc.identifier.citedreferenceFoster A. C, Gill R., Kemp J. A., and Woodruff G. ( 1987 ) Systemic administration of MK-801 prevents N -methyl-D-aspartate-induced neuronal degeneration in rat brain. Neurosci. Lett. 76, 307 – 311.en_US
dc.identifier.citedreferenceFoster A. C., Gill R., and Woodruff G. N. ( 1988 ) Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation. J. Neurosci. 8, 4745 – 4754.en_US
dc.identifier.citedreferenceGreenamyre J. T. and Young A. B. ( 1989 ) Synaptic localization of striatal NMDA, quisqualate, and kainate receptors. Neurosci. Lett. 101, 1133 – 1137.en_US
dc.identifier.citedreferenceKohler C. and Schwarcz R. ( 1981 ) Monosodium glutamate: increased neurotoxicity after removal of neuronal reuptake sites. Brain Res. 211, 485 – 491.en_US
dc.identifier.citedreferenceMcDonald J. W., Silverstein F. S., and Johnston M. V. ( 1988 ) Neurotoxicity of N -methyl-D-aspartate is markedly enhanced in the developing rat central nervous system. Brain Res. 459, 200 – 203.en_US
dc.identifier.citedreferenceMcDonald J. W., Roeser N. F., Silverstein F. S., and Johnston M. V. ( 1989a ) Quantitative assessment of neuroprotection against NMDA-induced brain injury. Exp. Neurol. 106, 289 – 296.en_US
dc.identifier.citedreferenceMcDonald J. W., Silverstein F. S., and Johnston M. V. ( 1989b ) Neuroprotective effects of MK-801, TCP, PCP and CPP against N -methyl-D-aspartate induced neurotoxicity in an in vivo perinatal rat model. Brain Res. 490, 33 – 40.en_US
dc.identifier.citedreferenceMcDonald J. W., Silverstein F. S., Cardona D., Hudson C., Chen R., and Johnston M. V. ( 1990 ) Systemic administration of MK-801 protects against N -methyl-D-aspartate and quisqualate mediated neurotoxicity in perinatal rats. Neuroscience 36, 589 – 600.en_US
dc.identifier.citedreferenceRhoads E. G., Kaplan M. A., Peterson N. A., and Ragupathy E. ( 1982 ) Effects of free fatty acids on synaptosomal amino acid uptake systems. J. Neurochem. 38, 1255 – 1260.en_US
dc.identifier.citedreferenceRothman S. M. and Olney J. W. ( 1987 ) Excitotoxicity and the NMDA receptor. Trends. Neurosci. 10, 299 – 302.en_US
dc.identifier.citedreferenceRothman S. M., Thurston J. H., and Hanhart R. E. ( 1987 ) Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience 22, 471 – 480.en_US
dc.identifier.citedreferenceSilverstein F. S., Buchanan K., and Johnston M. V. ( 1986 ) Perinatal hypoxia-ischemia disrupts striatal high affinity 3 H-glutamate uptake into synaptosomes. J. Neurochem. 47, 1615 – 1619.en_US
dc.identifier.citedreferenceVincent S. R. and McGeer E. G. ( 1980 ) A comparison of sodium-dependent glutamate binding with high affinity glutamate uptake in rat striatum. Brain Res. 184, 99 – 108.en_US
dc.identifier.citedreferenceWong E. H. F., Kemp J. A., Priestly T., Knight A. R., Woodruff G. N., and Iversen L. L. ( 1986 ) The anticonvulsant MK-801 is a potent N -methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA 83, 7102 – 7108.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.