Show simple item record

Inositol Lipids and Signal Transduction in the Nervous System: An Update

dc.contributor.authorFisher, Stephen K.en_US
dc.contributor.authorHeacock, Anne M.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T15:09:34Z
dc.date.available2010-04-01T15:09:34Z
dc.date.issued1992-01en_US
dc.identifier.citationFisher, Stephen K.; Heacock, Anne M.; Agranoff, Bernard W. (1992). "Inositol Lipids and Signal Transduction in the Nervous System: An Update." Journal of Neurochemistry 58(1): 18-38. <http://hdl.handle.net/2027.42/65626>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65626
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1309233&dopt=citationen_US
dc.description.abstractThe role that inositol lipids play in cellular signaling events in eukaryotic cells remains one of the most intensively investigated areas of cell biology. In this respect, phosphoinositide-mediated signal transduction in the CNS is no exception; major advances have been made since a previous review on this subject (Fisher and Agranoff, 1987). Not only have stimulated phosphoinositide turnover and its physiological sequelae been demonstrated repeatedly in a variety of neural preparations, but, in addition, the detailed molecular mechanisms underlying these events continue to unfold. Here we review the progress that has occurred in selected aspects of this topic since 1987. In the first two sections of this article, emphasis is placed on novel functional roles for the inositol lipids and on recent insights into the molecular characteristics and regulation of three key components of the phosphoinositide signal transduction system, namely, the inositol lipid kinases, phospholipases C (PLCs), and the inositol 1,4,5-trisphosphate[I(1,4,5)P 3 ] receptor. The metabolic fate of I(1,4,5)P 3 in neural tissues, as well as its control, is also detailed. Later we focus on identification of the multiple receptor subtypes that are coupled to inositol lipid turnover and discuss possible strategies for intervention into phosphoinositide-mediated signal transduction. Due to space limitations, an extensive evaluation of the diacylglycerol/protein kinase C (DAG/PKC) limb of the signal transduction pathway is not included (for reviews, see Nishizuka, 1988; Kanoh et al., 1990).en_US
dc.format.extent2475378 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1992 International Society for Neurochemistryen_US
dc.titleInositol Lipids and Signal Transduction in the Nervous System: An Updateen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNeuroscience Laboratory, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum* Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid1309233en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65626/1/j.1471-4159.1992.tb09273.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1992.tb09273.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAckermann K. E., Gish B. G., Honchar M. P., and Sherman W. R. ( 1987 ) Evidence that inositol 1-phosphate in brain of lithium-treated rats results mainly from phosphatidylinositol metabolism. Biochem. J. 242, 517 – 524.en_US
dc.identifier.citedreferenceAgranoff B. W. ( 1978 ) Cyclitol confusion. Trends Biochem. Sci. 3, N283 – N285.en_US
dc.identifier.citedreferenceAgranoff B. W. and Fisher S. K. ( 1991 ) Phosphoinositides and their stimulated breakdown, in Inositol Phosphates and Related Compounds: Synthesis and Therapeutic Potential ( Reitz, A. B. ). Washington, D.C. American Chemical Society, pp. 20 – 32.en_US
dc.identifier.citedreferenceAkil M. and Fisher S. K. ( 1989 ) Muscarinic receptor-stimulated phosphoinositide turnover in human SK-N-SH neuroblastoma cells: differential inhibition by agents that elevate cyclic AMP. J. Neurochem. 53, 1479 – 1486.en_US
dc.identifier.citedreferenceAkins P. T., Surmeier D. J., and Kitai S. T. ( 1990 ) M 1 muscarinic acetylcholine receptor in cultured rat neostriatum regulates phosphoinositide hydrolysis. J. Neurochem. 54, 266 – 273.en_US
dc.identifier.citedreferenceAkiyama K., Yamada N., and Otsuki S. ( 1989 ) Lasting increase in excitatory amino acid receptor-mediated polyphosphoinositide hydrolysis in the amygdala/pyriform cortex of amygdala-kindled rats. Brain Res. 485, 95 – 101.en_US
dc.identifier.citedreferenceAlexander S. P. H., Kendall D. A., and Hill S. J. ( 1989 ) Differences in the adenosine receptors modulating inositol phosphates and cyclic AMP accumulation in mammalian cerebral cortex. Br. J. Pharmacol. 98, 1241 – 1248.en_US
dc.identifier.citedreferenceAlexander S. P. H., Hill S. J., and Kendall D. A. ( 1990 ) Excitatory amino acid-induced formation of inositol phosphates in guinea-pig cerebral cortical slices: involvement of ionotropic or metabotropic receptors ? J. Neurochem. 55, 1439 – 1441.en_US
dc.identifier.citedreferenceAllison J. H., Blisner M. E., Holland W. H., Hipps P. P., and Sherman W. R. ( 1976 ) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664 – 670.en_US
dc.identifier.citedreferenceAllsup D. J. and Boarder M. R. ( 1990 ) Comparison of P 2 purinergic receptors of aortic endothelial cells with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response. Mol. Pharmacol. 38, 84 – 91.en_US
dc.identifier.citedreferenceAmbrosini A. and Meldolesi J. ( 1989 ) Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. J. Neurochem. 53, 825 – 833.en_US
dc.identifier.citedreferenceAnanth U. S., Leli U., and Hauser G. ( 1987 ) Stimulation of phosphoinositide hydrolysis by serotonin in C 6 glioma cells. J. Neurochem. 48, 253 – 261.en_US
dc.identifier.citedreferenceArbonÉs L., Picatoste F., and GarcÍa A. ( 1988 ) Histamine H 1 -receptors mediate phosphoinositide hydrolysis in astrocyte-enriched primary cultures. Brain Res. 450, 144 – 152.en_US
dc.identifier.citedreferenceAshkenazi A., Ramachandran J., and Capon D. J. ( 1989 ) Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature 340, 146 – 150.en_US
dc.identifier.citedreferenceBaird J. G. and Nahorski S. R. ( 1990a ) Differences between muscarinic-receptor- and Ca 2+ -induced inositol polyphosphate isomer accumulation in rat cerebral-cortex slices. Biochem. J. 267, 835 – 838.en_US
dc.identifier.citedreferenceBaird J. G. and Nahorski S. R. ( 1990b ) Quisqualate stimulates phosphoinositide metabolism by interaction with more than one receptor mechanism. Br. J. Pharmacol. (suppl.) 100, 315.en_US
dc.identifier.citedreferenceBarrett R. W., Steffey M. E., and Wolfram C. A. W. ( 1989 ) Type-A cholecystokinin receptors in CHP212 neuroblastoma cells: evidence for association with G protein and activation of phosphoinositide hydrolysis. Mol. Pharmacol. 35, 394 – 400.en_US
dc.identifier.citedreferenceBatty I. H. and Nahorski S. R. ( 1989 ) Rapid accumulation and sustained turnover of inositol phosphates in cerebral-cortex slices after muscarinic-receptor stimulation. Biochem. J. 260, 237 – 241.en_US
dc.identifier.citedreferenceBaumgold J. and White T. ( 1989 ) Pharmacological differences between muscarinic receptors coupled to phosphoinositide turnover and those coupled to adenylate cyclase inhibition. Biochem. Pharmacol. 38, 1605 – 1616.en_US
dc.identifier.citedreferenceBenjamins J. A. and Agranoff B. W. ( 1969 ) Distribution and properties of CDP-diglyceride: inositol transferase from brain. J. Neurochem. 16, 513 – 527.en_US
dc.identifier.citedreferenceBerridge M. J. and Irvine R. F. ( 1989 ) Inositol phosphates and cell signalling. Nature 341, 197 – 205.en_US
dc.identifier.citedreferenceBerridge M. J., Downes C. P., and Hanley M. R. ( 1982 ) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587 – 595.en_US
dc.identifier.citedreferenceBlackstone C. D., Supattapone S., and Snyder S. H. ( 1989 ) Inositol-phospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission. Proc. Natl. Acad. Sci. USA 86, 4316 – 4320.en_US
dc.identifier.citedreferenceBleasdale J. E., Thakur N. R., Gremban R. S., Bundy G. L., Fitzpatrick F. A., Smith R. J., and Bunting S. ( 1990 ) Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J. Pharmacol. Exp. Ther. 255, 756 – 768.en_US
dc.identifier.citedreferenceBonner T. I., Buckley N. J., Young A. C., and Brann M. R. ( 1987 ) Identification of a family of muscarinic acetylcholine receptor genes. Science 237, 527 – 532.en_US
dc.identifier.citedreferenceBonner T. I., Young A. C., Brann M. R., and Buckley N. J. ( 1988 ) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1, 403 – 410.en_US
dc.identifier.citedreferenceBoyer J. L., Hepler J. R., and Harden T. K. ( 1989 ) Hormone and growth factor receptor-mediated regulation of phospholipase C activity. Trends Pharmacol. Sci. 10, 360 – 364.en_US
dc.identifier.citedreferenceBrooks P. A. and Spyer K. M. ( 1989 ) Investigation of inositol hexakisphosphate actions in rat nucleus tractus solitarius in vitro. Neurosci. Lett. 105, 120 – 124.en_US
dc.identifier.citedreferenceBunn S. J., Marley P. D., and Livett B. G. ( 1988 ) Effects of opioid compounds on basal and muscarinic induced accumulation of inositol phosphates in cultured bovine chromaffin cells. Biochem. Pharmacol. 37, 395 – 399.en_US
dc.identifier.citedreferenceBurgess G. M., Mullaney I., McNeill M., Dunn P. M., and Rang H. P. ( 1989 ) Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J. Neurosci. 9, 3314 – 3325.en_US
dc.identifier.citedreferenceBurnstock G. and Kennedy C. ( 1985 ) Is there a basis for distinguishing two types of P 2 -purinoceptor ? Gen. Pharmacol. 16, 433 – 440.en_US
dc.identifier.citedreferenceCampbell M. D., Subramaniam S., Kotlikoff M. I., Williamson J. R., and Fluharty S. J. ( 1990 ) Cyclic AMP inhibits inositol polyphosphate production and calcium mobilization in neuroblastoma x glioma NG108-15 cells. Mol. Pharmacol. 38, 282 – 288.en_US
dc.identifier.citedreferenceCarpenter C. L. and Cantley L. C. ( 1990 ) Phosphoinositide kinases. Biochemistry 29, 11147 – 11156.en_US
dc.identifier.citedreferenceCarrithers M. D., Raman V. K., Masuda S., and Weyhenmeyer J. A. ( 1990 ) Effect of angiotensin II and III on inositol polyphosphate production in differentiated NG108-15 hybrid cells. Biochem. Biophys. Res. Commun. 167, 1200 – 1205.en_US
dc.identifier.citedreferenceCarter H. R., Wallace M. A., and Fain J. N. ( 1990a ) Activation of phospholipase C in rabbit brain membranes by carbachol in the presence of GTPΓS; effects of biological detergents. Biochim. Biophys. Acta 1054, 129 – 135.en_US
dc.identifier.citedreferenceCarter H. R., Wallace M. A., and Fain J. N. ( 1990b ) Purification and characterization of PLC-Β m, a muscarinic cholinergic regulated phospholipase C from rabbit brain membrane. Biochim. Biophys. Acta 1054, 119 – 128.en_US
dc.identifier.citedreferenceCasebolt T. and Jope R. S. ( 1987 ) Chronic lithium treatment reduces norepinephrine-stimulated inositol phospholipid hydrolysis in rat cortex. Eur. J. Pharmacol. 140, 245 – 246.en_US
dc.identifier.citedreferenceChallis R. A. J. and Nahorski S. R. ( 1990 ) Neurotransmitter and depolarization-stimulated accumulation of inositol 1,3,4,5-tetrakisphosphate mass in rat cerebral cortex slices. J. Neurochem. 54, 2138 – 2141.en_US
dc.identifier.citedreferenceChallis R. A. J., Batty I. H., and Nahorski S. R. ( 1988 ) Mass measurements of inositol (1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem. Biophys. Res. Commun. 157, 684 – 691.en_US
dc.identifier.citedreferenceChallis R. A. J., Chilvers E. R., Willcocks A. L., and Nahorski S. R. ( 1990 ) Heterogeneity of [ 3 H]inositol 1,4,5-trisphosphate binding sites in adrenal-cortical membranes. Biochem. J. 265, 421 – 427.en_US
dc.identifier.citedreferenceChan B. L., Chao M. V., and Saltiel A. R. ( 1989 ) Nerve growth factor stimulates the hydrolysis of glycosylphosphatidylinositol in PC-12 cells: a mechanism of protein kinase C regulation. Proc. Natl. Acad. Sci. USA 86, 1756 – 1760.en_US
dc.identifier.citedreferenceChen C.-K., Silverstein F. S., Fisher S. K., Statman D., and Johnson M. V. ( 1988 ) Perinatal hypoxic-ischemic brain injury enhances quisqualic acid-stimulated phosphoinositide turnover. J. Neurochem. 51, 353 – 359.en_US
dc.identifier.citedreferenceChiang C.-F. and Hauser G. ( 1989 ) Effects of bradykinin, GTPΓS, R59022 and N-ethylmaleimide on inositol phosphate production in NG108-15 cells. Biochem. Biophys. Res. Commun. 165, 175 – 181.en_US
dc.identifier.citedreferenceChiu A. S., Li P. P., and Warsh J. J. ( 1988 ) G-protein involvement in central-nervous-system muscarinic-receptor-coupled polyphosphoinositide hydrolysis. Biochem. J. 256, 995 – 999.en_US
dc.identifier.citedreferenceChoi K. Y., Kim H. K., Lee S. Y., Moon K. H., Sim S. S., Kim J. W., Chung H. K., and Rhee S. G. ( 1990 ) Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science 248, 64 – 66.en_US
dc.identifier.citedreferenceChoi W. C., Gerfen C. R., Suh P. G., and Rhee S. G. ( 1989 ) Immunohistochemical localization of a brain isozyme of phospholipase C (PLC III) in astroglia in rat brain. Brain Res. 499, 193 – 197.en_US
dc.identifier.citedreferenceCholewinski A. J., Hanley M. R., and Wilkin G. P. ( 1988 ) A phosphoinositide-linked peptide response in astrocytes: evidence for regional heterogeneity. Neurochem. Res. 13, 389 – 394.en_US
dc.identifier.citedreferenceChuang D.-M. and Dillon-Carter O. ( 1988 ) Characterization of bradykinin-induced phosphoinositide turnover in neurohybrid NCB-20 cells. J. Neurochem. 51, 505 – 513.en_US
dc.identifier.citedreferenceCioffi C. L. and Fisher S. K. ( 1990 ) Reduction of muscarinic receptor density and of guanine-nucleotide stimulated phosphoinositide hydrolysis in human SH-SY-5Y neuroblastoma cells following long-term treatment with 12-O-tetradecanoylphorbol-13-acetate or mezerein. J. Neurochem. 54, 1725 – 1734.en_US
dc.identifier.citedreferenceClarÓ E., Garcia A., and Picatoste F. ( 1989 ) Carbachol and histamine stimulation of guanine-nucleotide-dependent phosphoinositide hydrolysis in rat brain cortical membranes. Biochem. J. 261, 29 – 35.en_US
dc.identifier.citedreferenceClaustre Y., Rouquier L., and Scatton B. ( 1988a ) Pharmacological characterization of serotonin-stimulated phosphoinositide turnover in brain regions of the immature rat. J. Pharmacol. Exp. Ther. 244, 1051 – 1056.en_US
dc.identifier.citedreferenceClaustre Y., BÉnavidÈs J., and Scatton B. ( 1988b ) 5-HT 1A receptor agonists inhibit carbachol-induced stimulation of phosphoinositide turnover in the rat hippocampus. Eur. J. Pharmacol. 149, 149 – 153.en_US
dc.identifier.citedreferenceCochet C. and Chambaz E. M. ( 1986 ) Catalytic properties of a purified phosphatidylinositol-4-phosphate kinase from rat brain. Biochem. J. 273, 25 – 31.en_US
dc.identifier.citedreferenceCrawford M. L. A. and Young J. M. ( 1990a ) Ca 2+ -dependence provides evidence for differing mechanisms of GABA-induced inositol phosphate formation and GABA potentiation of inositol phosphate formation induced by noradrenaline in rat cerebral cortex. Mol. Brain Res. 8, 181 – 183.en_US
dc.identifier.citedreferenceCrawford M. L. A. and Young J. M. ( 1990b ) Potentiation by Γ-aminobutyric acid of Α 1 -agonist-induced accumulation of inositol phosphates in slices of rat cerebral cortex. J. Neurochem. 54, 2100 – 2109.en_US
dc.identifier.citedreferenceCrawford M. L. A., Hiley C. R., and Young J. M. ( 1990 ) Characteristics of endothelin-1 and endothelin-3 stimulation of phosphoinositide breakdown differ between regions of guinea-pig and rat brain. Naunyn–Schmiedebergs Arch. Pharmacol. 341, 268 – 271.en_US
dc.identifier.citedreferenceCrooke S. T. and Bennett C. F. ( 1989 ) Mammalian phosphoinositide-specific phospholipase C isoenzymes. Cell Calcium 10, 309 – 323.en_US
dc.identifier.citedreferenceCubitt A. B., Geras-Raaka E., and Gershengorn M. C. ( 1990 ) Thyrotropin-releasing hormone receptor occupancy determines the fraction of the responsive pool of inositol lipids hydrolysed in rat pituitary tumour cells. Biochem. J. 271, 331 – 336.en_US
dc.identifier.citedreferenceDanoff S. K., Supattapone S., and Snyder S. H. ( 1988 ) Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem. J. 254, 701 – 705.en_US
dc.identifier.citedreferenceDanoff S. K., Ferris C. D., Donath C., Fischer G. A., Munemitsu S., Ullrich A., Snyder S. H., and Ross C. A. ( 1991 ) Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc. Natl. Acad. Sci. USA 88, 2951 – 2955.en_US
dc.identifier.citedreferenceDavidson J. S., Wakefield I. K., Sohnius, U., van der Merwe P. A., and Millar R. P. ( 1990 ) A novel extracellular nucleotide receptor coupled to phosphoinositidase-C in pituitary cells. Endocrinology 126, 80 – 87.en_US
dc.identifier.citedreferenceDay N. S., Berti-Mattera L. N., and Eichberg J. ( 1991 ) Muscarinic cholinergic receptor-mediated phosphoinositide metabolism in peripheral nerve. J. Neurochem. 56, 1905 – 1913.en_US
dc.identifier.citedreferenceDesai M. and Conn P. J. ( 1990 ) Selective activation of phosphoinositide hydrolysis by a rigid analogue of glutamate. Neurosci. Lett. 109, 157 – 162.en_US
dc.identifier.citedreferenceDesrues L., Tonon M. C., and Vaudry H. ( 1990 ) Thyrotropin-releasing hormone stimulates polyphosphoinositide metabolism in the frog neurointermediate lobe. J. Mol. Endocrinol. 5, 129 – 136.en_US
dc.identifier.citedreferenceDiehl R. E., Whiting P., Potter J., Gee N., Ragan I., Linemeyer D., Schoepfer R., Bennett C., and Dixon R. A. F. ( 1990 ) Cloning and expression of bovine brain inositol monophosphatase. J. Biol. Chem. 265, 5946 – 5949.en_US
dc.identifier.citedreferenceDoniÉ F., HÜlser E., and Reiser G. ( 1990 ) High-affinity inositol 1,3,4,5-tetrakisphosphate receptor from cerebellum: solubilization, partial purification and characterization. FEBS Lett. 268, 194 – 198.en_US
dc.identifier.citedreferenceDownes C. P. and MacPhee C. H. ( 1990 ) myo-Inositol metabolites as cellular signals. Eur. J. Biochem. 193, 1 – 18.en_US
dc.identifier.citedreferenceDownes C. P. and Stone M. A. ( 1986 ) Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland. Biochem. J. 234, 199 – 204.en_US
dc.identifier.citedreferenceDrummond A. H. and Raeburn C. A. ( 1984 ) The interaction of lithium with thyrotropin releasing hormone-stimulated lipid metabolism in GH 3 pituitary tumor cells. Biochem. J. 224, 129 – 136.en_US
dc.identifier.citedreferenceDudek S. M. and Bear M. F. ( 1989 ) A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 246, 673 – 675.en_US
dc.identifier.citedreferenceDudek S. M., Bowen W. D., and Bear M. F. ( 1989 ) Postnatal changes in glutamate stimulated phosphoinositide turnover in rat neo-cortical synaptoneurosomes. Dev. Brain Res. 47, 123 – 128.en_US
dc.identifier.citedreferenceDyck L. E. ( 1990 ) Effects of dopamine on phosphoinositide hydrolysis in slices of rat striatum and cortex. Neurochem. Int. 17, 77 – 82.en_US
dc.identifier.citedreferenceEberhard D. A. and Holz R. W. ( 1988 ) Intracellular Ca 2+ activates phospholipase C. Trends Neurosci. 11, 517 – 520.en_US
dc.identifier.citedreferenceEberhard D. A., Cooper C. L., Low M. G., and Holz R. W. ( 1990 ) Evidence that the inositol phospholipids are necessary for exocytosis. Biochem. J. 268, 15 – 25.en_US
dc.identifier.citedreferenceEhrlich Y. H., Snider R. M., Kornecik E., Garfield M. G., and Lenox R. H. ( 1988 ) Modulation of neuronal signal transduction systems by extracellular ATP. J. Neurochem. 50, 295 – 301.en_US
dc.identifier.citedreference, Eisenberg F. ( 1967 ) D-Myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J. Biol. Chem. 242, 1375 – 1382.en_US
dc.identifier.citedreferenceEllis J., Huyler J. H., Kemp D. E., and Weiss S. ( 1990 ) Muscarinic receptors and second-messenger responses of neurons in primary culture. Brain Res. 511, 234 – 240.en_US
dc.identifier.citedreferenceEmori Y., Homma Y., Sorimachi H., Kawasaki H., Nakanishi O., Suzuki K., and Takenawa T. ( 1989 ) A second type of rat phosphoinositide-specific phospholipase C containing a src-related sequence not essential for phosphoinositide-hydrolyzing activity. J. Biol. Chem. 264, 21885 – 21890.en_US
dc.identifier.citedreferenceEndemann G., Dunn S. N., Cantley L. C. ( 1987 ) Bovine brain contains two types of phosphatidylinositol kinase. Biochemistry 26, 6845 – 6852.en_US
dc.identifier.citedreferenceEndemann G. C., Graziani A., and Cantley L. C. ( 1991 ) A monoclonal antibody distinguishes two types of phosphatidylinositol 4-kinase. Biochem. J. 273, 63 – 66.en_US
dc.identifier.citedreferenceErneux C., Delvaux A., Moreau C., and Dumont J. E. ( 1986 ) Characterization of D-myo-inositol 1,4,5-trisphosphate phosphatase in rat brain. Biochem. Biophys. Res. Commun. 134, 351 – 358.en_US
dc.identifier.citedreferenceEva C., Gamalero S. R., Genazzani E., and Costa E. ( 1990 ) Molecular mechanisms of homologous desensitization and internalization of muscarinic receptors in primary cultures of neonatal corticostriatal neurons. J. Pharmacol. Exp. Ther. 253, 257 – 265.en_US
dc.identifier.citedreferenceFain J. N., Wallace M. A., and Wojcikiewicz R. J. H. ( 1988 ) Evidence for involvement of guanine nucleotide-binding regulatory proteins in the activation of phospholipases by hormones. FASEB J. 2, 2569 – 2574.en_US
dc.identifier.citedreferenceFerguson M. A. J. and Williams A. F. ( 1988 ) Cell-surface anchoring of proteins via glycosylphosphatidylinositol structures. Annu. Rev. Biochem. 57, 285 – 320.en_US
dc.identifier.citedreferenceFerris C. D., Huganir R. L., Supattapone S., and Snyder S. H. ( 1989 ) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342, 87 – 89.en_US
dc.identifier.citedreferenceFerris C. D., Huganir R. L., and Snyder S. H. ( 1990 ) Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc. Natl. Acad. Sci. USA 87, 2147 – 2151.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1987 ) Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48, 999 – 1016.en_US
dc.identifier.citedreferenceFisher S. K. and Heacock A. M. ( 1988 ) A putative M 3 muscarinic cholinergic receptor of high molecular weight couples to phosphoinositide hydrolysis in human SK-N-SH neuroblastoma cells. J. Neurochem. 50, 984 – 987.en_US
dc.identifier.citedreferenceFisher S. K. and Landon R. E. ( 1991 ) Identification of multiple phosphoinositide-linked receptors on human SK-N-MC neuroepithelioma cells. J. Neurochem. 57, 1599 – 1608.en_US
dc.identifier.citedreferenceFisher S. K., Domask L. M., and Roland R. M. ( 1989 ) Muscarinic receptor regulation of cytoplasmic Ca 2+ concentrations in human SK-N-SH neuroblastoma cells: Ca 2+ requirements for phospholipase C activation. Mol. Pharmacol. 35, 195 – 204.en_US
dc.identifier.citedreferenceFisher S. K., Heacock A. M., Seguin E. B., and Agranoff B. W. ( 1990 ) Polyphosphoinositides are the major source of inositol phosphates in carbamoylcholine-stimulated SK-N-SH neuroblastoma cells. Mol. Pharmacol. 38, 54 – 63.en_US
dc.identifier.citedreferenceForray C. and El-Fakahany E. E. ( 1990 ) On the involvement of multiple muscarinic receptor subtypes in the activation of phosphoinositide metabolism in rat cerebral cortex. Mol. Pharmacol. 37, 893 – 902.en_US
dc.identifier.citedreferenceFouchier F., Baltz T., and Rougon G. ( 1990 ) Identification of glycosylphosphatidylinositol-specific phospholipases C in mouse brain membranes. Biochem. J. 269, 321 – 327.en_US
dc.identifier.citedreferenceFuruichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., and Mikoshiba K. ( 1989 ) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P 400. Nature 342, 32 – 38.en_US
dc.identifier.citedreferenceGammon C. M., Allen A. C., and Morell P. ( 1989 ) Bradykinin stimulates phosphoinositide hydrolysis and mobilization of arachidonic acid in dorsal root ganglion neurons. J. Neurochem. 53, 95 – 101.en_US
dc.identifier.citedreferenceGee N. S., Reid G. G., Jackson R. G., Barnaby R. J., and Ragan C. I. ( 1988a ) Purification and properties of inositol-1,4-bisphosphatase from bovine brain. Biochem. J. 253, 777 – 782.en_US
dc.identifier.citedreferenceGee N. S., Ragan C. I., Watling K. J., Aspley S., Jackson R. G., Reid G. G., Gani D., and Shute J. K. ( 1988b ) The purification and properties of myo-inositol monophosphatase from bovine brain. Biochem. J. 249, 883 – 889.en_US
dc.identifier.citedreferenceGerfen C. R., Choi W. C., Suh P. G., and Rhee S. G. ( 1988 ) Phospholipase C I and II brain isozymes: immunohistochemical localization in neuronal systems in rat brain. Proc. Natl. Acad. Sci. USA 85, 3208 – 3212.en_US
dc.identifier.citedreferenceGodfrey P. P. and Watson S. P. ( 1988 ) Fluoride inhibits agonist-induced formation of inositol phosphates in rat cortex. Biochem. Biophys. Res. Commun. 155, 664 – 669.en_US
dc.identifier.citedreferenceGodfrey P. P., McClue S. J., Young M. M., and Heal D. J. ( 1988 ) 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in the mouse cortex has pharmacological characteristics compatible with mediation via 5-HT 2 receptors but this response does not reflect altered 5-HT 2 function after 5,7-dihydroxytryptamine lesioning or repeated antidepressant treatments. J. Neurochem. 50, 730 – 738.en_US
dc.identifier.citedreferenceGodfrey P. P., McClue S. J., White A. M., Wood A. J., and Grahame-Smith D. G. ( 1989 ) Subacute and chronic in vivo lithium treatment inhibits agonist- and sodium fluoride-stimulated inositol phosphate production in rat cortex. J. Neurochem. 52, 498 – 506.en_US
dc.identifier.citedreferenceGoldschmidt-Clermont P. J., Machesky L. M., Baldassare J. J., and Pollard T. D. ( 1990 ) The actin-binding protein profilin binds to PIP 2 and inhibits its hydrolysis by phospholipase C. Science 247, 1575 – 1578.en_US
dc.identifier.citedreferenceGonzales R. A. and Crews F. T. ( 1985 ) Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes. Biochem. J. 232, 799 – 804.en_US
dc.identifier.citedreferenceGonzales R. A. and Crews F. T. ( 1988 ) Differential regulation of phosphoinositide phosphodiesterase activity in brain membranes by guanine nucleotides and calcium. J. Neurochem. 50, 1522 – 1528.en_US
dc.identifier.citedreferenceGonzales R. A. and Moerschbaecher J. M. ( 1989 ) A phencyclidine recognition site is associated with N-methyl-D-aspartate inhibition of carbachol-stimulated phosphoinositide hydrolysis in rat cortical slices. Mol. Pharmacol. 35, 787 – 794.en_US
dc.identifier.citedreferenceGrandison L. ( 1990 ) Platelet activating factor induces inositol phosphate accumulation in cultures of rat and bovine anterior pituitary cells. Endocrinology 127, 1786 – 1791.en_US
dc.identifier.citedreferenceGreene D. A. and Lattimer S. A. ( 1985 ) Altered nerve myo-inositol metabolism in experimental diabetes and its relationship to nerve function, in Inositol and Phosphoinositides: Metabolism and Biological Regulation ( Bleasdale J. E., Eichberg J., Hauser G., eds ), pp. 563 – 582. Humana Press, Clifton, New Jersey.en_US
dc.identifier.citedreferenceGuiramand J., Sassetti I., and Recasens M. ( 1989 ) Developmental changes in the chemosensitivity of rat brain synaptoneurosomes to excitatory amino acids, estimated by inositol phosphate formation. Int. J. Dev. Neurosci. 7, 257 – 266.en_US
dc.identifier.citedreferenceGuiramand J., Mayat E., Bartolami S., Lenoir M., Rumigny J.-F., Pujol R., and RÉcasens M. ( 1990 ) A M 3 muscarinic receptor coupled to inositol phosphate formation in the rat cochlea ? Biochem. Pharmacol. 39, 1913 – 1919.en_US
dc.identifier.citedreferenceGusovsky F., Yasumoto T., and Daly J. W. ( 1989 ) Maitotoxin, a potent, general activator of phosphoinositide breakdown. FEBS Lett. 243, 307 – 312.en_US
dc.identifier.citedreferenceHallcher L. M. and Sherman W. R. ( 1980 ) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10896 – 10901.en_US
dc.identifier.citedreferenceHamm H. E., Deretic D., Arendt A., Hargrave P. A., Koenig B., and Hofmann K. P. ( 1988 ) Site of G protein binding to rhodopsin mapped with synthetic peptides from the Α subunit. Science 241, 832 – 835.en_US
dc.identifier.citedreferenceHanft G. and Gross G. ( 1989 ) Subclassification of Α 1 -adrenoceptor recognition sites by urapidil derivatives and other selective antagonists. Br. J. Pharmacol. 97, 691 – 700.en_US
dc.identifier.citedreferenceHansen C. A., Johanson R. A., Williamson M. T., and Williamson J. R. ( 1987 ) Purification and characterization of two types of soluble inositol phosphate 5-phosphomonoesterases from rat brain. J. Biol. Chem. 262, 17319 – 17326.en_US
dc.identifier.citedreferenceHansson E., Simonsson P., and Alling C. ( 1990 ) Interactions between cyclic AMP and inositol phosphate transduction systems in astrocytes in primary culture. Neuropharmacology 29, 591 – 598.en_US
dc.identifier.citedreferenceHarootunian A. T., Kao J. P. Y., Paranjape S., and Tsien R. Y. ( 1991 ) Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP 3. Science 251, 75 – 78.en_US
dc.identifier.citedreferenceHarwood J. L. and Hawthorne J. N. ( 1969 ) The properties and subcellular distribution of phosphatidylinositol kinase in mammalian tissues. Biochim. Biophys. Acta 171, 75 – 88.en_US
dc.identifier.citedreferenceHawkins P. T., Reynolds D. J. M., Poyner D. R., and Hanley M. R. ( 1990 ) Identification of a novel inositol phosphate recognition site: specific [ 3 H]inositol hexakisphosphate binding to brain regions and cerebellar membranes. Biochem. Biophys. Res. Commun. 167, 819 – 827.en_US
dc.identifier.citedreferenceHeacock A. M., Seguin E. B., and Agranoff B. W. ( 1990 ) Developmental and regional studies of the metabolism of inositol 1,4,5-trisphosphate in rat brain. J. Neurochem. 54, 1405 – 1411.en_US
dc.identifier.citedreferenceHide I., Kato T., and Yamawaki S. ( 1989 ) In vivo determination of 5-hydroxytryptamine receptor-stimulated phosphoinositide turnover in rat brain. J. Neurochem. 53, 556 – 560.en_US
dc.identifier.citedreferenceHÖer D., Kwiatkowski A., Seib C., Rosenthal W., Schultz G., and Oberdisse E. ( 1988 ) Degradation of inositol 1,3,4,5-tetrakisphosphate by porcine brain cytosol yields inositol 1,3,4-trisphosphate and inositol 1,4,5-trisphosphate. Biochem. Biophys. Res. Commun. 154, 668 – 675.en_US
dc.identifier.citedreferenceHÖer A., HÖer D., and Oberdisse E. ( 1990 ) Properties of a soluble inositol 1,3,4,5-tetrakisphosphate 3-phosphatase from porcine brain. Biochem. J. 270, 715 – 719.en_US
dc.identifier.citedreferenceHollingsworth E. B. ( 1989 ) Gastrin-releasing peptide receptor in rat brain membranes: specific binding and stimulation of phosphoinositide breakdown. Mol. Pharmacol. 35, 689 – 694.en_US
dc.identifier.citedreferenceHomma Y., Imaki J., Nakanishi O., and Takenawa T. ( 1988 ) Isolation and characterization of two different forms of inositol phospholipid-specific phospholipase C from rat brain. J. Biol. Chem. 263, 6592 – 6598.en_US
dc.identifier.citedreferenceHonchar M. P., Ackermann K. E., and Sherman W. R. ( 1989 ) Chronically administered lithium alters neither myo-inositol monophosphatase activity nor phosphoinositide levels in rat brain. J. Neurochem. 53, 590 – 594.en_US
dc.identifier.citedreferenceHonchar M. P., Vogler G. P., Gish B. G., and Sherman W. R. ( 1990 ) Evidence that phosphoinositide metabolism in rat cerebral cortex stimulated by pilocarpine, physostigmine, and pargyline in vivo is not changed by chronic lithium treatment. J. Neurochem. 55, 1521 – 1525.en_US
dc.identifier.citedreferenceHorwitz J. ( 1989 ) Muscarinic receptor stimulation increases inositolphospholipid metabolism and inhibits cyclic AMP accumulation in PC12 cells. J. Neurochem. 53, 197 – 204.en_US
dc.identifier.citedreferenceHouamed K. M., Kuijper J. L., Gilbert T. L., Haldeman B. A., O'Hara P. J., Mulvihill E. R., Almers W., and Hagen F. S. ( 1991 ) Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252, 1318 – 1321.en_US
dc.identifier.citedreferenceHowell S., Barnaby R. J., Rowe T., Ragan C. I., and Gee N. S. ( 1989 ) Evidence for at least four different inositol bisphosphatases in bovine brain. Eur. J. Biochem. 183, 169 – 172.en_US
dc.identifier.citedreferenceHynie S., Wroblewski J. T., and Costa E. ( 1989 ) Profile of phosphatidylinositol metabolism stimulated by carbachol and glutamate in primary cultures of rat cerebellar neurons. Neuropharmacology 28, 1309 – 1315.en_US
dc.identifier.citedreferenceImaizumi T., Osugi T., Misaki N., Uchida S., and Yoshida H. ( 1989 ) Heterologous desensitization of bradykinin-induced phosphatidylinositol response and Ca 2+ mobilization by neurotensin in NG108-15 cells. Eur. J. Pharmacol. 161, 203 – 208.en_US
dc.identifier.citedreferenceInhorn R. C. and Majerus P. W. ( 1987 ) Inositol polyphosphate 1-phosphatase from calf brain. J. Biol. Chem. 262, 15946 – 15952.en_US
dc.identifier.citedreferenceInhorn R. C. and Majerus P. W. ( 1988 ) Properties of inositol polyphosphate 1-phosphatase. J. Biol. Chem. 263, 14559 – 14565.en_US
dc.identifier.citedreferenceIvins K. J. and Molinoff P. B. ( 1990 ). Serotonin-2 receptors coupled to phosphoinositide hydrolysis in a clonal cell line. Mol. Pharmacol. 37, 622 – 630.en_US
dc.identifier.citedreferenceIvorra I., Gigg R., Irvine R. F., and Parker I. ( 1991 ) Inositol 1,3,4,6-tetrakisphosphate mobilizes calcium in Xenopus oocytes with high potency. Biochem. J. 273, 317 – 321.en_US
dc.identifier.citedreferenceJohanson R. A., Hansen C. A., and Williamson J. R. ( 1988 ) Purification of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain. J. Biol. Chem. 263, 7465 – 7471.en_US
dc.identifier.citedreferenceJones C. R., Hiley C. R., Pelton J. T., and Mohr M. ( 1989 ) Autoradiographic visualization of the binding sites for [ 125 I]endothelin in rat and human brain. Neurosci. Lett. 97, 276 – 279.en_US
dc.identifier.citedreferenceJones T. H., Brown B. L., and Dobson P. R. M. ( 1989 ) Bradykinin stimulates phosphoinositide metabolism and prolactin secretion in rat anterior pituitary cells. J. Mol. Endocrinol. 2, 47 – 53.en_US
dc.identifier.citedreferenceJope R. S. ( 1988 ) Modulation of phosphoinositide hydrolysis by NaF and aluminum in rat cortical slices. J. Neurochem. 51, 1731 – 1736.en_US
dc.identifier.citedreferenceJope R. S. and Li X. ( 1989 ) Inhibition of inositol phospholipid synthesis and norepinephrine-stimulated hydrolysis in rat brain slices by excitatory amino acids. Biochem. Pharmacol. 38, 589 – 596.en_US
dc.identifier.citedreferenceJoseph S. K. and Williamson J. R. ( 1989 ) Inositol polyphosphates and intracellular calcium release. Arch. Biochem. Biophys. 273, 1 – 15.en_US
dc.identifier.citedreferenceKanoh H., Yamada K., and Sakane F. ( 1990 ) Diacylglycerol kinase: a key modulator of signal transduction ? Trends Biochem. Sci. 15, 47 – 50.en_US
dc.identifier.citedreferenceKatan M. and Parker P. J. ( 1987 ) Purification of phosphoinositide-specific phospholipase C from a particulate fraction of bovine brain. Eur. J. Biochem. 168, 413 – 418.en_US
dc.identifier.citedreferenceKelly E., Batty I., and Nahorski S. R. ( 1988 ) Dopamine receptor stimulation does not affect phosphoinositide hydrolysis in slices of rat striatum. J. Neurochem. 51, 918 – 924.en_US
dc.identifier.citedreferenceKendall D. A. and Firth J. L. ( 1990 ) Inositol phospholipid hydrolysis in human brain; adenosine inhibition of the response to histamine. Br. J. Pharmacol. 100, 37 – 40.en_US
dc.identifier.citedreferenceKendall D. A. and Hill S. J. ( 1988 ) Adenosine inhibition of histamine-stimulated inositol phospholipid hydrolysis in mouse cerebral cortex. J. Neurochem. 50, 497 – 502.en_US
dc.identifier.citedreferenceKendall D. A. and Nahorski S. R. ( 1987 ) Acute and chronic lithium influence agonist and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. J. Pharmacol. Exp. Ther. 241, 1023 – 1027.en_US
dc.identifier.citedreferenceKennington A. S., Hill C. R., Craig J., Bogardus C., Raz I., Ortmeyer H. K., Hansen B. C., Romero G., and Larner J. ( 1990 ) Low urinary chiro-inositol excretion in non–insulin-dependent diabetes mellitus. N. Engl. J. Med. 323, 373 – 378.en_US
dc.identifier.citedreferenceKim U. H., Kim J. W., and Rhee S. G. ( 1989 ) Phosphorylation of phospholipase C-gamma by cAMP-dependent protein kinase. J. Biol. Chem. 264, 20167 – 20170.en_US
dc.identifier.citedreferenceKlenk E. and Hendricks U. W. ( 1961 ) An inositol phosphatide containing carbohydrate, isolated from human brain. Biochim. Biophys. Acta 50, 602 – 603.en_US
dc.identifier.citedreferenceKloog Y., Ambar I., Sokolovsky M., Kochva E., Wollberg Z., and Bdolah A. ( 1988 ) Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science 242, 268 – 270.en_US
dc.identifier.citedreferenceKloog Y., Ambar I., Kochva E., Wollberg Z., Bdolah A., and Sokolovsky M. ( 1989 ) Sarafotoxin receptors mediate phosphoinositide hydrolysis in various rat brain regions. FEBS Lett. 242, 387 – 390.en_US
dc.identifier.citedreferenceKunysz E., Michel A. D., Whiting R. L., and Woods K. ( 1989 ) The human astrocytoma cell line 1321 N1 contains M 2 -glandular type muscarinic receptors linked to phosphoinositide turnover. Br. J. Pharmacol. 96, 271 – 278.en_US
dc.identifier.citedreferenceLambert D. G., Ghataorre A. S., and Nahorski S. R. ( 1989 ) Muscarinic receptor binding characteristics of a human neuroblastoma SK-N-SH and its clones SH-SY-5Y and SH-EP1. Eur. J. Pharmacol. 165, 71 – 77.en_US
dc.identifier.citedreferenceLee K.-Y., Ryu S. H., Suh P.-G., Choi W. C., and Rhee S. G. ( 1987 ) Phospholipase C associated with particulate fractions of bovine brain. Proc. Natl. Acad. Sci. USA 84, 5540 – 5544.en_US
dc.identifier.citedreferenceLee S. Y., Sim S. S., Kim J. W., Moon K. H., Kim J. H., and Rhee S. G. ( 1990 ) Purification and properties of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain. J. Biol. Chem. 265, 9434 – 9440.en_US
dc.identifier.citedreferenceLenox R. H., Hendley D., and Ellis J. ( 1988 ) Desensitization of muscarinic receptor-coupled phosphoinositide hydrolysis in rat hippocampus: comparisons with the Α 1 -adrenergic response. J. Neurochem. 50, 558 – 564.en_US
dc.identifier.citedreferenceLester H. A. ( 1988 ) Heterologous expression of excitability proteins: route to more specific drugs ?. Science 241, 1057 – 1063.en_US
dc.identifier.citedreferenceLi P. P., Sibony D., and Warsh J. J. ( 1990 ) Guanosine 5′-O-thiotriphosphate and sodium fluoride activate polyphosphoinositide hydrolysis in rat cortical membranes by distinct mechanisms. J. Neurochem. 54, 1426 – 1432.en_US
dc.identifier.citedreferenceLi X., Song L., and Jope R. S. ( 1990 ) Modulation of phosphoinositide metabolism in rat brain slices by excitatory amino acids, arachidonic acid, and GABA. Neurochem. Res. 15, 725 – 738.en_US
dc.identifier.citedreferenceLiang M., Martin M. W., and Harden T. K. ( 1987 ) [ 3 H]-Propylbenzilylcholine mustard-labeling of muscarinic cholinergic receptors that selectively couple to phospholipase C or adenylate cyclase in two cultured cell lines. Mol. Pharmacol. 32, 443 – 449.en_US
dc.identifier.citedreferenceLin W.-W., Lee C. Y., and Chuang D.-M. ( 1990 ) Comparative studies of phosphoinositide hydrolysis induced by endothelin-related peptides in cultured cerebellar astrocytes, C 6 -glioma and cerebellar granule cells. Biochem. Biophys. Res. Commun. 168, 512 – 519.en_US
dc.identifier.citedreferenceLips D. L. and Majerus P. W. ( 1989 ) The discovery of a 3-phosphomonoesterase that hydrolyzes phosphatidylinositol 3-phosphate in NIH 3T3 cells. J. Biol. Chem. 264, 19911 – 19915.en_US
dc.identifier.citedreferenceLips D. L., Majerus P. W., Gorga F. R., Young A. T., and Benjamin T. L. ( 1989 ) Phosphatidylinositol 3-phosphate is present in normal and transformed fibroblasts and is resistant to hydrolysis by bovine brain phospholipase C II. J. Biol. Chem. 264, 8759 – 8763.en_US
dc.identifier.citedreferenceLisanti M. P., Rodriguez-Boulan E., and Saltiel A. R. ( 1990 ) Emerging functional roles for the glycosylphosphatidylinositol membrane protein anchor. J. Membr. Biol. 117, 1 – 10.en_US
dc.identifier.citedreferenceLitosch I. ( 1987 ) Guanine nucleotide and NaF stimulation of phospholipase C activity in rat cerebral-cortical membranes. Biochem. J. 244, 35 – 40.en_US
dc.identifier.citedreferenceLitosch I. ( 1989 ) Guanine nucleotides mediate stimulatory and inhibitory effects on cerebral-cortical membrane phospholipase C activity. Biochem. J. 261, 245 – 251.en_US
dc.identifier.citedreferenceLo W. W. Y. and Hughes J. ( 1988 ) Differential regulation of chotecystokinin- and muscarinic-receptor-mediated phosphoinositide turnover in Flow 9000 cells. Biochem. J. 251, 625 – 630.en_US
dc.identifier.citedreferenceLow M. G. ( 1989 ) Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins. FASEB J. 3, 1600 – 1608.en_US
dc.identifier.citedreferenceLow M. G. and Kincade P. W. ( 1985 ) Phosphatidylinositol is the membrane-anchoring domain of the Thy-1 glycoprotein. Nature 318, 62 – 64.en_US
dc.identifier.citedreferenceMacCumber M. W., Ross C. A., and Snyder S. H. ( 1990 ) Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc. Natl. Acad. Sci. USA 87, 2359 – 2363.en_US
dc.identifier.citedreferenceMaeda N., Niinobe M., Inoue Y., and Mikoshiba K. ( 1989 ) Developmental expression and intracellular location of P 400 protein characteristic of Purkinje cells in the mouse cerebellum. Dev. Biol. 133, 67 – 76.en_US
dc.identifier.citedreferenceMaeda N., Niinobe M., and Mikoshiba K. ( 1990 ) A cerebellar Purkinje cell marker P 400 protein is an inositol 1,4,5-trisphosphate (InsP 3 ) receptor protein. Purification and characterization of InsP 3 receptor complex. EMBO J. 9, 61 – 67.en_US
dc.identifier.citedreferenceMaeda N., Kawasaki T., Nakade S., Yokota N., Taguchi T., Kasai M., and Mikoshiba K. ( 1991 ) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J. Biol. Chem. 266, 1109 – 1116.en_US
dc.identifier.citedreferenceMahan L. C., Burch R. M., Monsma, F. J., and Sibley D. R. ( 1990 ) Expression of striatal D 1 dopamine receptors coupled to inositol phosphate production and Ca 2+ mobilization in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 87, 2196 – 2200.en_US
dc.identifier.citedreferenceMailleux P., Takazawa K., Erneux C., and Vanderhaeghen J.-J. ( 1991 ) Inositol 1,4,5-trisphosphate 3-kinase mRNA: high levels in the rat hippocampal CA1 pyramidal and dentate gyrus granule cells and in cerebellar Purkinje cells. J. Neurochem. 56, 345 – 347.en_US
dc.identifier.citedreferenceMajerus P. W., Ross T. S., Cunningham T. W., Caldwell K. K., Jefferson A. B., and Bansal V. S. ( 1990 ) Recent insights in phosphatidylinositol signaling. Cell 63, 459 – 465.en_US
dc.identifier.citedreferenceMalhotra R. K., Bhave S. V., Wakade T. D., Bhave A. S., and Wakade A. R. ( 1990 ) Effects of neurotransmitters and peptides on phospholipid hydrolysis in sympathetic and sensory neurons. FASEB J. 4, 2492 – 2498.en_US
dc.identifier.citedreferenceMallet J., Huchet M., Pougeois R., and Changeux J.-P. ( 1976 ) Anatomical, physiological and biochemical studies on the cerebellum from mutant mice. III. Protein differences associated with the weaver, staggerer and nervous mutations. Brain Res. 103, 291 – 312.en_US
dc.identifier.citedreferenceManzoni O., Fagni L., Pin J.-P., Rassendren F., Poulat F., Sladeczek F., and Bockaert J. ( 1990 ) (trans)-1-Amino-cyclopentyl-1,3-dicarboxylate stimulates quisqualate phosphoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and Xenopus oocytes. Mol. Pharmacol. 38, 1 – 6.en_US
dc.identifier.citedreferenceMargolis R. K., Goossen B., and Margolis R. U. ( 1988 ) Phosphatidylinositol-anchored glycoproteins of PC12 pheochromocytoma cells and brain. Biochemistry 27, 3454 – 3458.en_US
dc.identifier.citedreferenceMasu M., Tanabe Y., Tsuchida K., Shigemoto R., and Nakanishi S. ( 1991 ) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760 – 765.en_US
dc.identifier.citedreferenceMau S. E., Larsen P. J., Mikkelsen J. A., and SÆ;rmark T. ( 1990 ) Substance P and related tachykinins induce receptor-mediated hydrolysis of polyphosphoinositides in the rat anterior pituitary. Mol. Cell. Endocrinol. 69, 69 – 78.en_US
dc.identifier.citedreferenceMcAtee P. and Dawson G. ( 1990 ) Phospholipase C activity in NCB-20 cells is inhibited by protein kinase A-mediated phosphorylation of low molecular mass GTP-binding proteins. J. Biol. Chem. 265, 6788 – 6793.en_US
dc.identifier.citedreferenceMeek J. L., Rice T. J., and Anton E. ( 1988 ) Rapid purification of inositol monophosphate phosphatase from beef brain. Biochem. Biophys. Res. Commun. 156, 143 – 148.en_US
dc.identifier.citedreferenceMeyer T., Holowka D., and Stryer L. ( 1988 ) Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science 240, 653 – 655.en_US
dc.identifier.citedreferenceMichel M. C., Hanft G., and Gross G. ( 1990 ) Α 1B - but not Α 1A -adrenoceptors mediate inositol phosphate generation. Naunyn–Schmiedebergs Arch. Pharmacol. 341, 385 – 387.en_US
dc.identifier.citedreferenceMignery G. A., SÜdhof T. C., Takei K., and De Camilli P. ( 1989 ) Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342, 192 – 195.en_US
dc.identifier.citedreferenceMignery G. A., Newton C. L., Archer B. T., and SÜdhof T. C. ( 1990 ) Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 265, 12679 – 12685.en_US
dc.identifier.citedreferenceMinneman K. P. ( 1988 ) Α 1 -Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca 2+. Pharmacol. Rev. 40, 87 – 119.en_US
dc.identifier.citedreferenceMisawa H., Ueda H., and Satoh M. ( 1990 ) Opioid agonist inhibits phospholipase C, possibly via an inhibition of G-protein activity. Neurosci. Lett. 112, 324 – 327.en_US
dc.identifier.citedreferenceMoratalla R., Vallejo M., and Lightman S. L. ( 1988 ) Vasopressin stimulates inositol phospholipid metabolism in rat medulla oblongata in vivo. Brain Res. 450, 398 – 402.en_US
dc.identifier.citedreferenceMorgan S. J., Smith A. D., and Parker P. J. ( 1990 ) Purification and characterization of bovine brain type I phosphatidylinositol kinase. Eur. J. Biochem. 191, 761 – 767.en_US
dc.identifier.citedreferenceMoritz A., De Graan P. N. E., Ekhart P. F., Gispen W. H., and Wirtz K. W. A. ( 1990 ) Purification of a phosphatidylinositol 4-phosphate kinase from bovine brain membranes. J. Neurochem. 54, 351 – 354.en_US
dc.identifier.citedreferenceMoroi-Fetters S. E., Neff N. H., and Hadjiconstantinou M. ( 1988 ) Muscarinic receptor-mediated phosphoinositide hydrolysis in the rat retina. J. Pharmacol. Exp. Ther. 246, 553 – 557.en_US
dc.identifier.citedreferenceMorrisett R. A., Chow C. C., Sakaguchi T., Shin C., and McNamara J. O. ( 1990 ) Inhibition of muscarinic-coupled phosphoinositide hydrolysis by N-methyl-D-aspartate is dependent on depolarization via channel activation. J. Neurochem. 54, 1517 – 1525.en_US
dc.identifier.citedreferenceMoyer J. D., Reizes O., Ahir S., Jiang C., Malinowski N., and Baker D. C. ( 1988 ) Substrate properties of analogs of myo-inositol. Mol. Pharmacol. 33, 683 – 689.en_US
dc.identifier.citedreferenceMurphy S. and Welk G. ( 1990 ) Hydrolysis of polyphosphoinositides in astrocytes by platelet-activating factor. Eur. J. Pharmacol. 188, 399 – 401.en_US
dc.identifier.citedreferenceNahorski S. R. and Potter B. V. L. ( 1989 ) Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol. Sci. 10, 139 – 144.en_US
dc.identifier.citedreferenceNakahata N. and Harden T. K. ( 1987 ) Regulation of inositol trisphosphate accumulation by muscarinic cholinergic and H 1 -histamine receptors on human astrocytoma cells. Biochem. J. 241, 337 – 344.en_US
dc.identifier.citedreferenceNakahata N., Matsuoka I., Ono T., and Nakanishi H. ( 1989 ) Thromboxane A 2 activates phospholipase C in astrocytoma cells via pertussis toxin-insensitive G-protein. Eur. J. Pharmacol. 162, 407 – 417.en_US
dc.identifier.citedreferenceNakahata N., Abe M. T., Matsuoka I., and Nakanishi H. ( 1990 ) Mastoparan inhibits phosphoinositide hydrolysis via pertussis toxin-insensitive G-protein in human astrocytoma cells. FEBS Lett. 260, 91 – 94.en_US
dc.identifier.citedreferenceNegishi M., Ito S., and Hayaishi O. ( 1989 ) Prostaglandin E receptors in bovine adrenal medulla are coupled to adenylate cyclase via G i and to phosphoinositide metabolism in a pertussis toxin-insensitive manner. J. Biol. Chem. 264, 3916 – 3923.en_US
dc.identifier.citedreferenceNicoletti F. and Canonico P. L. ( 1989 ) Glycine potentiates the stimulation of inositol phospholipid hydrolysis by excitatory amino acids in primary cultures of cerebellar neurons. J. Neurochem. 53, 724 – 727.en_US
dc.identifier.citedreferenceNicoletti F., Wroblewski J. T., Alho H., Eva C., Fadda E., and Costa E. ( 1987 ) Lesions of putative glutamatergic pathways potentiate the increase of inositol phospholipid hydrolysis elicited by excitatory amino acids. Brain Res. 436, 103 – 112.en_US
dc.identifier.citedreferenceNicoletti F., Wroblewski J. T., Fadda E., and Costa E. ( 1988 ) Pertussis toxin inhibits signal transduction at a specific metabolotropic glutamate receptor in primary cultures of cerebellar granule cells. Neuropharmacology 27, 551 – 556.en_US
dc.identifier.citedreferenceNicoletti F., Bruno V., Cavallaro S., Copani A., Sortino M. A., and Canonico P. L. ( 1990 ) Specific binding sites for inositolhexakisphosphate in brain and anterior pituitary. Mol. Pharmacol. 37, 689 – 693.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1988 ) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661 – 665.en_US
dc.identifier.citedreferenceNoble E. P., Sincini E., Bergmann J., and ten Bruggencate G. ( 1989 ) Excitatory amino acids inhibit stimulated phosphoinositide hydrolysis in the rat prefrontal cortex. Life Sci. 44, 19 – 26.en_US
dc.identifier.citedreferenceNunn D. L., Potter B. V. L., and Taylor C. W. ( 1990 ) Molecular target sizes of inositol 1,4,5-trisphosphate receptors in liver and cerebellum. Biochem. J. 265, 393 – 398.en_US
dc.identifier.citedreferenceOakes S. G., Iaizzo P. A., Richelson E., and Powis G. ( 1988 ) Histamine-induced intracellular free Ca ++, inositol phosphates and electrical changes in murine N1E-115 neuroblastoma cells. J. Pharmacol. Exp. Ther. 247, 114 – 121.en_US
dc.identifier.citedreferenceOrellana S., Solski P. A., and Brown J. H. ( 1987 ) Guanosine 5′-O-(thiotriphosphate)-dependent inositol triphosphate formation in membranes is inhibited by phorbol ester and protein kinase C. J. Biol. Chem. 262, 1638 – 1643.en_US
dc.identifier.citedreferenceOsborne N. N. ( 1990 ) Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rabbit retina. Evidence for a specific quisqualate receptor subtype associated with neurones. Exp. Eye Res. 50, 397 – 405.en_US
dc.identifier.citedreferenceOsborne N. N. and Ghazi H. ( 1989 ) The effect of substance P and other tachykinins on inositol phospholipid hydrolysis in rabbit retina, superior colliculus and retinal cultures. Vision Res. 29, 757 – 764.en_US
dc.identifier.citedreferencePalmer E., Monaghan D. T., and Cotman C. W. ( 1989 ) trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol. 166, 585 – 587.en_US
dc.identifier.citedreferencePatel J., Moore W. C., Thompson C., Keith R. A., and Salama A. I. ( 1990 ) Characterization of the quisqualate receptor linked to phosphoinositide hydrolysis in neurocortical cultures. J. Neurochem. 54, 1461 – 1466.en_US
dc.identifier.citedreferencePearce B., Morrow C., and Murphy S. ( 1988 ) Characteristics of phorbol ester- and agonist-induced down-regulation of astrocyte receptors coupled to inositol phospholipid metabolism. J. Neurochem. 50, 936 – 944.en_US
dc.identifier.citedreferencePearce B., Murphy S., Jeremy J., Morrow C., and Dandona P. ( 1989 ) ATP-evoked Ca 2+ mobilisation and prostanoid release from astrocytes: P 2 -purinergic receptors linked to phosphoinositide hydrolysis. J. Neurochem. 52, 971 – 977.en_US
dc.identifier.citedreferencePearce B., Morrow C., and Murphy S. ( 1990 ) Further characterisation of excitatory amino acid receptors coupled to phosphoinositide metabolism in astrocytes. Neurosci. Lett. 113, 298 – 303.en_US
dc.identifier.citedreferencePeriyasamy S. and Hoss W. ( 1990 ) Kappa opioid receptors stimulate phosphoinositide turnover in rat brain. Life Sci. 47, 219 – 225.en_US
dc.identifier.citedreferencePerney T. M. and Miller R. J. ( 1989 ) Two different G-proteins mediate neuropeptide Y and bradykinin-stimulated phospholipid breakdown in cultured rat sensory neurons. J. Biol. Chem. 264, 7317 – 7327.en_US
dc.identifier.citedreferencePfeilschifter J. ( 1990 ) Comparison of extracellular ATP and UTP signalling in rat renal mesangial cells. Biochem. J. 272, 469 – 472.en_US
dc.identifier.citedreferencePierce P. A. and Peroutka S. J. ( 1988 ) Antagonism of 5-hydroxytryptamine 2 receptor-mediated phosphatidylinositol turnover by d-lysergic acid diethylamide. J. Pharmacol. Exp. Ther. 247, 918 – 925.en_US
dc.identifier.citedreferencePoyner D. R., Hawkins P. T., Benton H. P., and Hanley M. R. ( 1990 ) Changes in inositol lipids and phosphates after stimulation of the MAS-transfected NG 115-401L-C3 cell line by mitogenic and non-mitogenic stimuli. Biochem. J. 271, 605 – 611.en_US
dc.identifier.citedreferencePrasad V. N. H. and Moody T. W. ( 1989 ) Bombesin-like peptides stimulate phosphatidylinositol turnover in rat brain slices. Peptides 9, 1345 – 1349.en_US
dc.identifier.citedreferenceRagan C. I., Watling K. J., Gee N. S., Aspley S., Jackson R. G., Reid G. G., Baker R., Billington D. C., Barnaby R. J., and Leeson P. D. ( 1988 ) The dephosphorylation of inositol 1,4-bisphosphate to inositol in liver and brain involves two distinct Li + -sensitive enzymes and proceeds via inositol 4-phosphate. Biochem. J. 249, 143 – 148.en_US
dc.identifier.citedreferenceRaiteri M., Marchi M., and Paudice P. ( 1987 ) Vasoactive intestinal polypeptide (VIP) potentiates the muscarinic stimulation of phosphoinositide turnover in rat cerebral cortex. Eur. J. Pharmacol. 133, 127 – 128.en_US
dc.identifier.citedreferenceRebecchi M. J. and Rosen O. M. ( 1987 ) Purification of a phosphoinositide-specific phospholipase C from bovine brain. J. Biol. Chem. 262, 12526 – 12532.en_US
dc.identifier.citedreferenceRhee S. G., Suh P.-G., Ryu S.-H., and Lee S. Y. ( 1989 ) Studies of inositol phospholipid-specific phospholipase C. Science 244, 546 – 550.en_US
dc.identifier.citedreferenceRobertson P. L., Bruno G. R., and Datta S. C. ( 1990 ) Glutamate-stimulated, guanine nucleotide-mediated phosphoinositide turnover in astrocytes is inhibited by cyclic AMP. J. Neurochem. 55, 1727 – 1733.en_US
dc.identifier.citedreferenceRoss C. A., Meldolesi J., Milner T. A., Satoh T., Supattapone S., and Snyder S. H. ( 1989 ) Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339, 468 – 470.en_US
dc.identifier.citedreferenceRubinstein J. E. and Hitzemann R. J. ( 1990 ) Further evidence against the coupling of dopamine receptors to phosphoinositide hydrolysis in rat striatum. Biochem. Pharmacol. 39, 1965 – 1970.en_US
dc.identifier.citedreferenceRyu S. H., Cho K. S., Lee K. Y., Suh P.-G., and Rhee S. G. ( 1986 ) Two forms of phosphatidylinositol-specific phospholipase C from bovine brain. Biochem. Biophys. Res. Commun. 141, 137 – 144.en_US
dc.identifier.citedreferenceRyu S. H., Cho K. S., Lee K.-Y., Suh P.-G., and Rhee S. G. ( 1987a ) Purification and characterization of two immunologically distinct phosphoinositide-specific phospholipase C from bovine brain. J. Biol. Chem. 262, 12511 – 12518.en_US
dc.identifier.citedreferenceRyu S. H., Suh P.-G., Cho K. S., Lee K.-Y., and Rhee S. G. ( 1987b ) Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase C. Proc. Natl. Acad. Sci. USA 84, 6649 – 6653.en_US
dc.identifier.citedreferenceSaltiel A. R., Fox J. A., Sherline P., Sahyoun N., and Cuatrecasas P. ( 1987 ) Purification of phosphatidylinositol kinase from bovine brain myelin. Biochem. J. 241, 759 – 763.en_US
dc.identifier.citedreferenceSanders-Bush E., Burris K. D., and Knoth K. ( 1988 ) Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J. Pharmacol. Exp. Ther. 246, 924 – 928.en_US
dc.identifier.citedreferenceSasakawa N., Nakaki T., Yamamoto S., and Kato R. ( 1989 ) Stimulation by ATP of inositol trisphosphate accumulation and calcium mobilization in cultured adrenal chromaffin cells. J. Neurochem. 52, 441 – 447.en_US
dc.identifier.citedreferenceSasakawa N., Nakaki T., and Kato R. ( 1990 ) Stimulus-responsive and rapid formation of inositol pentakisphosphate in cultured adrenal chromaffin cells. J. Biol. Chem. 265, 17700 – 17705.en_US
dc.identifier.citedreferenceSatoh T., Ross C. A., Villa A., Supattapone S., Pozzan T., Snyder S. H., and Meldolesi J. ( 1990 ) The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J. Cell Biol. 111, 615 – 624.en_US
dc.identifier.citedreferenceSchoepp D. D., Johnson B. G., Smith E. C. R., and McQuaid L. A. ( 1990a ) Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid. Mol. Pharmacol. 38, 222 – 228.en_US
dc.identifier.citedreferenceSchoepp D., Bockaert J., and Sladeczek F. ( 1990b ) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol. Sci. 11, 508 – 515.en_US
dc.identifier.citedreferenceSeren M. S., Aldinio C., Zanoni R., Leon A., and Nicoletti F. ( 1989 ) Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischemia. J. Neurochem. 53, 1700 – 1705.en_US
dc.identifier.citedreferenceSerra M., Mei L., Roeske W. R., Lui G. K., Watson M., and Yamamura H. I. ( 1988 ) The intact human neuroblastoma cell (SH-SY5Y) exhibits high-affinity [ 3 H]pirenzepine binding associated with hydrolysis of phosphatidylinositols. J. Neurochem. 50, 1513 – 1521.en_US
dc.identifier.citedreferenceSerunian L. A., Haber M. T., Fukui T., Kim J. W., Rhee S. G., Lowenstein J. M., and Cantley L. C. ( 1989 ) Polyphosphoinositides produced by phosphatidylinositol 3-kinase are poor substrates for phospholipases C from rat liver and bovine brain. J. Biol. Chem. 264, 17809 – 17815.en_US
dc.identifier.citedreferenceSharif N. A., Hunter J. C., Hill R. G., and Hughes J. ( 1988 ) Bradykinin-induced accumulation of [ 3 H]inositol-1-phosphate in human embryonic pituitary tumour cells by activation of a B 2 receptor. Neurosci. Lett. 86, 279 – 283.en_US
dc.identifier.citedreferenceSharif N. A., To Z., and Whiting R. L. ( 1989 ) First pharmacological characterization of TRH receptors linked to phosphoinositide hydrolysis in GH3 pituitary cells using agonist specificity of eight TRH analogs. Biochem. Biophys. Res. Commun. 161, 1306 – 1311.en_US
dc.identifier.citedreferenceShears S. B. ( 1989 ) Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J. 260, 313 – 324.en_US
dc.identifier.citedreferenceShewey L. M. and Dorsa D. M. ( 1988 ) V 1 -type vasopressin receptors in rat brain septum: binding characteristics and effects on inositol phospholipid metabolism. J. Neurosci. 8, 1671 – 1677.en_US
dc.identifier.citedreferenceSim S. S., Kim J. W., and Rhee S. G. ( 1990 ) Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J. Biol. Chem. 265, 10367 – 10372.en_US
dc.identifier.citedreferenceSmith C. D. and Chang K.-J. ( 1989 ) Regulation of brain phosphatidylinositol-4-phosphate kinase by GTP analogues. J. Biol. Chem. 264, 3206 – 3210.en_US
dc.identifier.citedreferenceSmith R. J., Sam L. M., Justen J. M., Bundy G. L., Bala G. A., and Bleasdale J. E. ( 1990 ) Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J. Pharmacol. Exp. Ther. 253, 688 – 697.en_US
dc.identifier.citedreferenceSmrcka A. V., Hepler J. R., Brown K. O., and Sternweis P. C. ( 1991 ) Regulation of polyphosphoinositide-specific phospholipase C activity by purified G q. Science 251, 804 – 807.en_US
dc.identifier.citedreferenceSnyder S. H. and Supattapone S. ( 1989 ) Isolation and functional characterization of an inositol trisphosphate receptor from brain. Cell Calcium 10, 337 – 342.en_US
dc.identifier.citedreferenceSortino M. A., Evans W. S., Speciale C., Thorner M. O., Scapagnini U., MacLeod R. M., and Canonico P. L. ( 1988 ) Gonadotropin-releasing hormone-stimulated phosphoinositide hydrolysis in the anterior pituitary. Neuroendocrinology 48, 544 – 550.en_US
dc.identifier.citedreferenceSortino M. A., Nicoletti F., and Canonico P. L. ( 1990 ) Inositol hexakisphosphate stimulates 45 Ca 2+ uptake in anterior pituitary cells in culture. Eur. J. Pharmacol. 189, 115 – 118.en_US
dc.identifier.citedreferenceSpÄt A., Bradford P. G., McKinney J. S., Rubin R. P., and Putney, J. W. ( 1986 ) A saturable receptor for 32 P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils. Nature 319, 514 – 516.en_US
dc.identifier.citedreferenceStanley A. F., Hawkins P. T., and Hanley M. R. ( 1990 ) Inositol hexakisphosphate biosynthesis in mammalian brain: identification of a novel inositol pentakisphosphate kinase. Biochem. Soc. Trans. 18, 460 – 461.en_US
dc.identifier.citedreferenceStephens L. R., Hawkins P. T., Barker C. J., and Downes C. P. ( 1988 ) Synthesis of myo-inositol 1,3,4,5,6-pentakisphosphate from inositol phosphates generated by receptor activation. Biochem. J. 253, 721 – 733.en_US
dc.identifier.citedreferenceStephens L., Hawkins P. T., and Downes C. P. ( 1989 ) Metabolic and structural evidence for the existence of a third species of polyphosphoinositide in cells: D-phosphatidyl-myo-inositol 3-phosphate. Biochem. J. 259, 267 – 276.en_US
dc.identifier.citedreferenceStrosznajder J. and Strosznajder R. P. ( 1989 ) Stimulation of phosphoinositide degradation and phosphatidylinositol-4-phosphate phosphorylation by GTP exclusively in plasma membrane of rat brain. Neurochem. Res. 14, 717 – 723.en_US
dc.identifier.citedreferenceSupattapone S., Worley P. F., Baraban J. M., and Snyder S. H. ( 1988 ) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263, 1530 – 1534.en_US
dc.identifier.citedreferenceSylvia V., Curtin G., Norman J., Stec J., and Busbee D. ( 1988 ) Activation of a low specific activity form of DNA polymerase Α by inositol-1,4-bisphosphate. Cell 54, 651 – 658.en_US
dc.identifier.citedreferenceTakashima A. and Kenimer J. G. ( 1989 ) Muscarinic-stimulated norepinephrine release and phosphoinositide hydrolysis in PC12 cells are independent events. J. Biol. Chem. 264, 10654 – 10659.en_US
dc.identifier.citedreferenceTakazawa K., Passareiro H., Dumont J. E., and Erneux C. ( 1988 ) Ca 2+ /calmodulin-sensitive inositol 1,4,5-trisphosphate 3-kinase in rat and bovine brain tissues. Biochem. Biophys. Res. Commun. 153, 632 – 641.en_US
dc.identifier.citedreferenceTakazawa K., Lemos M., Delvaux A., Lejeune C., Dumont J. E., and Erneux C. ( 1990a ) Rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem. J. 268, 213 – 217.en_US
dc.identifier.citedreferenceTakazawa K., Vandekerckhove J., Dumont J. E., and Erneux C. ( 1990b ) Cloning and expression in Escherichia coli of a rat brain cDNA encoding a Ca 2+ /calmodulin-sensitive inositol 1,4,5-trisphosphate 3-kinase. Biochem. J. 272, 107 – 112.en_US
dc.identifier.citedreferenceTaylor S. J., Chae H. Z., Rhee S. G., and Exton J. H. ( 1991 ) Activation of the Β 1 isozyme of phospholipase C by Α subunits of the G q class of G protein. Nature 350, 516 – 518.en_US
dc.identifier.citedreferenceThompson A. K. and Fisher S. K. ( 1990 ) Relationship between agonist-induced muscarinic receptor loss and desensitization of stimulated phosphoinositide turnover in two neuroblastomas: methodological considerations. J. Pharmacol. Exp. Ther. 252, 744 – 752.en_US
dc.identifier.citedreferenceThompson A. K. and Fisher S. K. ( 1991 ) Preferential coupling of cell surface muscarinic receptors to phosphoinositide hydrolysis in human neuroblastoma cells. J. Biol. Chem. 266, 5004 – 5010.en_US
dc.identifier.citedreferenceThompson A. K., Mostafapour S. P., Denlinger L. C., Bleasdale J. E., and Fisher S. K. ( 1991 ) The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells: a role for G p in receptor compartmentation. J. Biol. Chem. (in press).en_US
dc.identifier.citedreferenceTorrens Y., Daguet De Montety M. C., El Etr M., Beaujouan J. C., and Glowinski J. ( 1989 ) Tachykinin receptors of the NK1 type (substance P) coupled positively to phospholipase C on cortical astrocytes from the newborn mouse in primary culture. J. Neurochem. 52, 1913 – 1918.en_US
dc.identifier.citedreferenceUndie A. S. and Friedman E. ( 1990 ) Stimulation of a dopamine D 1 receptor enhances inositol phosphate formation in rat brain. J. Pharmacol. Exp. Ther. 253, 987 – 992.en_US
dc.identifier.citedreferenceVadnal R. E. and Parthasarathy R. ( 1989 ) The identification of a novel inositol lipid, phosphatidylinositol trisphosphate (PIP 3 ), in rat cerebrum using in vivo techniques. Biochem. Biophys. Res. Commun. 163, 995 – 1001.en_US
dc.identifier.citedreferenceVallejo M., Jackson T., Lightman S., and Hanley M. R. ( 1987 ) Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain. Nature 330, 656 – 658.en_US
dc.identifier.citedreferenceVan Calker D., Takahata K., and Heumann R. ( 1989 ) Nerve growth factor potentiates the hormone-stimulated intracellular accumulation of inositol phosphates and Ca 2+ in rat PC12 pheochromocytoma cells: comparison with the effect of epidermal growth factor. J. Neurochem. 52, 38 – 45.en_US
dc.identifier.citedreferenceVan der Merwe P. A., Wakefield I. K., Fine J., Millar R. P., and Davidson J. S. ( 1989 ) Extracellular adenosine triphosphate activates phospholipase C and mobilizes intracellular calcium in primary cultures of sheep anterior pituitary cells. FEBS Lett. 243, 333 – 336.en_US
dc.identifier.citedreferenceVan Dongen C. J., Zwiers H., and Gispen W. H. ( 1984 ) Purification and partial characterization of the phosphatidylinositol 4-phosphate kinase from rat brain. Biochem. J. 223, 197 – 203.en_US
dc.identifier.citedreferenceVan Hooff C. O. M., De Graan P. N. E., Oestreicher A. B., and Gispen W. H. ( 1988 ) B-50 phosphorylation and polyphospho-inositide metabolism in nerve growth cone membranes. J. Neurosci. 8, 1789 – 1795.en_US
dc.identifier.citedreferenceVarney M. A., Rivera J., Lopez-Bernal A., and Watson S. P. ( 1990 ) Are there subtypes of the inositol 1,4,5-trisphosphate receptor ? Biochem. J. 269, 211 – 216.en_US
dc.identifier.citedreferenceVolontÉ C. and Racker E. ( 1988 ) Lithium stimulation of membrane-bound phospholipase C from PC12 cells exposed to nerve growth factor. J. Neurochem. 51, 1163 – 1168.en_US
dc.identifier.citedreferenceVolontÉ C., Parries G. S., and Racker E. ( 1988 ) Stimulation of inositol incorporation in lipids of PC12 cells by nerve growth factor and bradykinin. J. Neurochem. 51, 1156 – 1162.en_US
dc.identifier.citedreferenceWakui M., Potter B. V. L., and Petersen O. H. ( 1989 ) Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 339, 317 – 320.en_US
dc.identifier.citedreferenceWallace M. A. and ClarÓ E. ( 1990 ) A novel role for dopamine: inhibition of muscarinic cholinergic-stimulated phosphoinositide hydrolysis in rat brain cortical membranes. Neurosci. Lett. 110, 155 – 161.en_US
dc.identifier.citedreferenceWhitman M., Kaplan D., Roberts T., and Cantley L. ( 1987 ) Evidence for two distinct phosphatidylinositol kinases in fibroblasts. Biochem. J. 247, 165 – 174.en_US
dc.identifier.citedreferenceWillcocks A. L., Cooke A. M., Potter B. V. L., and Nahorski S. R. ( 1987 ) Stereospecific recognition sites for [ 3 H]inositol (1,4,5)-trisphosphate in particulate preparations of rat cerebellum. Biochem. Biophys. Res. Commun. 146, 1071 – 1078.en_US
dc.identifier.citedreferenceWillcocks A. L., Potter B. V. L., Cooke A. M., and Nahorski S. R. ( 1988 ) myo-Inositol(1,4,5)-triphosphorothionate binds to specific [ 3 H]inositol-(1,4,5)trisphosphate sites in rat cerebellum and is resistant to 5-phosphatase. Eur. J. Pharmacol. 155, 181 – 183.en_US
dc.identifier.citedreferenceWilson K. M. and Minneman K. P. ( 1990 ) Pertussis toxin inhibits norepinephrine-stimulated inositol phosphate formation in primary brain cell cultures. Mol. Pharmacol. 38, 274 – 281.en_US
dc.identifier.citedreferenceWilson K. M., Gilchrist S., and Minneman K. P. ( 1990 ) Comparison of Α 1 -adrenergic receptor-stimulated inositol phosphate formation in primary neuronal and glial cultures. J. Neurochem. 55, 691 – 697.en_US
dc.identifier.citedreferenceWojcikiewicz R. J. H. and Nahorski S. R. ( 1989 ) Phosphoinositide hydrolysis in permeabilized SH-SY5Y human neuroblastoma cells is inhibited by mastoparan. FEBS Lett. 247, 341 – 344.en_US
dc.identifier.citedreferenceWong Y.-H. H., Kalmbach S. J., Hartman B. K., and Sherman W. R. ( 1987 ) Immunohistochemical staining and enzyme activity measurements show myo-inositol-1-phosphate synthase to be localized in the vasculature of brain. J. Neurochem. 48, 1434 – 1442.en_US
dc.identifier.citedreferenceWood C. A. and Schofield J. G. ( 1989 ) The effects of thyrotropin-releasing hormone and potassium depolarization on phosphoinositide metabolism and cytoplasmic calcium in bovine pituitary cells. Biochim. Biophys. Acta 1013, 97 – 106.en_US
dc.identifier.citedreferenceWorley P. F., Baraban J. M., Colvin J. S., and Snyder S. H. ( 1987a ) Inositol trisphosphate receptor localization in brain: variable stoichiometry with protein kinase C. Nature 325, 159 – 161.en_US
dc.identifier.citedreferenceWorley P. F., Baraban J. M., Supattapone S., Wilson V. S., and Snyder S. H. ( 1987b ) Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J. Biol. Chem. 262, 12132 – 12136.en_US
dc.identifier.citedreferenceWorley P. F., Baraban J. M., and Snyder S. H. ( 1989 ) Inositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain. J. Neurosci. 9, 339 – 346.en_US
dc.identifier.citedreferenceXu J. and Chuang D.-M. ( 1987a ) Muscarinic acetylcholine receptor-mediated phosphoinositide turnover in cultured cerebellar granule cells: desensitization by receptor agonists. J. Pharmacol. Exp. Ther. 242, 238 – 242.en_US
dc.identifier.citedreferenceXu J. and Chuang D.-M. ( 1987b ) Serotonergic, adrenergic and histaminergic receptors coupled to phospholipase C in cultured cerebellar granule cells of rats. Biochem. Pharmacol. 36, 2353 – 2358.en_US
dc.identifier.citedreferenceYamakawa A. and Takenawa T. ( 1988 ) Purification and characterization of membrane-bound phosphatidylinositol kinase from rat brain. J. Biol. Chem. 263, 17555 – 17560.en_US
dc.identifier.citedreferenceYu O. and Chuang D.-M. ( 1988 ) GABA pretreatment enhances glutamate mediated phosphoinositide hydrolysis in neurons. Eur. J. Pharmacol. 158, 179 – 180.en_US
dc.identifier.citedreferenceZhang W., Sakai N., Yamada H., Fu T., and Nozawa Y. ( 1990 ) Endothelin-1 induces intracellular calcium rise and inositol 1,4,5-trisphosphate formation in cultured rat and human glioma cells. Neurosci. Lett. 112, 199 – 204.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.