Show simple item record

Interacting effects of soil fertility and atmospheric CO 2 on leaf area growth and carbon gain physiology in Populus × euramericana (Dode) Guinier

dc.contributor.authorCurtis, Peter S.en_US
dc.contributor.authorVogel, Christoph S.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorTeeri, James A.en_US
dc.date.accessioned2010-04-01T15:11:14Z
dc.date.available2010-04-01T15:11:14Z
dc.date.issued1995-02en_US
dc.identifier.citationCURTIS, PETER S.; VOGEL, CHRISTOPH S.; PREGITZER, KURT S.; ZAK, DONALD R.; TEERI, JAMES A. (1995). "Interacting effects of soil fertility and atmospheric CO 2 on leaf area growth and carbon gain physiology in Populus × euramericana (Dode) Guinier." New Phytologist 129(2): 253-263. <http://hdl.handle.net/2027.42/65655>en_US
dc.identifier.issn0028-646Xen_US
dc.identifier.issn1469-8137en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65655
dc.description.abstractTwo important processes which may limit productivity gains in forest ecosystems with rising atmospheric CO 2 are reduction in photosynthetic capacity following prolonged exposure to high CO 2 and diminution of positive growth responses when soil nutrients, particularly N, are limiting. To examine the interacting effects of soil fertility and CO 2 enrichment on photosynthesis and growth in trees we grew hybrid poplar ( Populus × euramericana ) for 158 d in the field at ambient and twice ambient CO 2 and in soil with low or high N availability. We measured the timing and rate of canopy development, the seasonal dynamics of leaf level photosynthetic capacity, respiration, and N and carbohydrate concentration, and final above- and belowground dry weight. Single leaf net CO 2 assimilation (A) increased at elevated CO 2 over the majority of the growing season in both fertility treatments. At high fertility, the maximum size of individual leaves, total leaf number, and seasonal leaf area duration (LAD) also increased at elevated CO 2 , leading to a 49% increase in total dry weight. In contrast, at low fertility leaf area growth was unaffected by CO 2 treatment. Total dry weight nonetheless increased 25% due to CO 2 effects on A. Photosynthetic capacity (A at constant internal p(CO 2 ), (( C 1 )) was reduced in high CO 2 plants after 100 d growth at low fertility and 135 d growth at high fertility. Analysis of A responses to changing C 1 indicated that this negative adjustment of photosynthesis was due to a reduction in the maximum rate of CO 2 fixation by Rubisco. Maximum rate of electron transport and phosphate regeneration capacity were either unaffected or declined at elevated CO 2 . Carbon dioxide effects on leaf respiration were most pronounced at high fertility, with increased respiration mid-season and no change (area basis) or reduced (mass basis) respiration late-season in elevated compared to ambient CO 2 plants. This temporal variation correlated with changes in leaf N concentration and leaf mass per area. Our results demonstrate the importance of considering both structural and physiological pathways of net C gain in predicting tree responses to rising CO 2 under conditions of suboptimal soil fertility.en_US
dc.format.extent13014781 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1995 The New Phytologisten_US
dc.subject.otherCarbon Dioxideen_US
dc.subject.otherNitrogen Availabilityen_US
dc.subject.otherPopulus ×en_US
dc.subject.otherEuramericanaen_US
dc.subject.otherLeaf Growthen_US
dc.subject.otherGas Exchangeen_US
dc.titleInteracting effects of soil fertility and atmospheric CO 2 on leaf area growth and carbon gain physiology in Populus × euramericana (Dode) Guinieren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Forestry and Lake Superior Ecosystems Research Center, Michigan Technological University, Houghton, Michigan 49931, USAen_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationumBiological Station, University of Michigan, Pellston, Michigan 49769, USAen_US
dc.contributor.affiliationotherDepartment of Plant Biology, The Ohio State University, Columbus, Ohio 43210, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65655/1/j.1469-8137.1995.tb04295.x.pdf
dc.identifier.doi10.1111/j.1469-8137.1995.tb04295.xen_US
dc.identifier.sourceNew Phytologisten_US
dc.identifier.citedreferenceAmthor JS. 1991. Respiration in a future, higher-CO 2 world. Plant, Cell and Environment 14 : 13 – 20.en_US
dc.identifier.citedreferenceArp WJ. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated CO 2, Plant, Cell and Environment 14 : 869 – 875.en_US
dc.identifier.citedreferenceBouma D. 1970. Effects of nitrogen nutrition on leaf expansion and photosynthesis of Trifolium subterranium L. I. Comparison between different levels of nitrogen supply. Annals of Botany 34 : 1131 – 1142.en_US
dc.identifier.citedreferenceBunce JA. 1990. Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Annals of Botany 65 : 67 – 642.en_US
dc.identifier.citedreferenceCeulemans R. 1990. Genetic variation in functional and structural productivity determinants in poplar. Amsterdam ; Thesis Publishers.en_US
dc.identifier.citedreferenceChiariello NR, Mooney HA, Williams K. 1989. Growth, carbon allocation and cost of plant tissues. In : Pearcy RW, Ehleringer JR, Mooney MA, Rundel PW, eds. Plant Physiological ecology: field methods and instrumentation. London : Chapman and Hall. 327 – 366.en_US
dc.identifier.citedreferenceCurtis PS, Teeri JA. 1992. Seasonal responses of leaf gas exchange to elevated carbon dioxide in Populus grandidentata. Canadian Journal of Forest Research 22 : 1320 – 1325.en_US
dc.identifier.citedreferenceCurtis PS, Zak DR, Pregitzer KS, Teeri JA. 1994. Above and belowground response of Populus gradidentata to elevated atmospheric CO 2 and soil N availability. Plant and Soil 165 : 45 – 51.en_US
dc.identifier.citedreferenceDiaz S, Grime JP, Harris J, McPherson E. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364 : 616 – 617.en_US
dc.identifier.citedreferenceDrake BG. 1992. A field study of the effects of elevated CO 2 on ecosystem processes in a Chesapeake Bay wetland. Australian Journal of Botany 40 : 579 – 595.en_US
dc.identifier.citedreferenceEl Kohen A, Rouhier H, Mousseau M. 1992. Changes in dry weight and nitrogen partitioning induced by elevated CO 2 depend on soil nutrient availability in sweet chestnut ( Castanea sativa Mill). Annales des Sciences ForestiÈres 49 : 83 – 90.en_US
dc.identifier.citedreferenceFarquhar GD, Caemmerer S von, Berry JA. 1980. A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149 : 78 – 90.en_US
dc.identifier.citedreferenceGaudillÈre J-P, Mousseau M. 1989. Short term effect of CO 2 enrichment on leaf development and gas exchange of young poplars ( Populus euramericana cv I 214). Oecologia Plantarum 10 : 95 – 105.en_US
dc.identifier.citedreferenceGoudriaan J, de Ruiter HE. 1983. Plant growth in response to CO 2 enrichment, at two levels of nitrogen and phosphorus supply. 1. Dry matter, leaf area and development, Netherlands Journal of Agricultural Science 31 : 157 – 169.en_US
dc.identifier.citedreferenceGraham RL, Turner MG, Dale VH. 1990. How increasing CO 2 and climate change affect forests. BioScience 40 : 575 – 587.en_US
dc.identifier.citedreferenceGunderson CA, Wullschleger SD. 1994. Photosynthetic acclimation in trees to rising atmospheric CO 2 : a broader perspective. Photosynthesis Research 39 : 369 – 388.en_US
dc.identifier.citedreferenceHarley PC, Sharkey TD. 1991. An improved model of C 3 photosynthesis at high CO 2 : reversed O 2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research 27 : 169 – 178.en_US
dc.identifier.citedreferenceHarley PC, Thomas RB, Reynolds JF, Strain BR. 1992. Modelling photosynthesis of cotton grown in elevated CO 2. Plant, Cell and Environment 15 : 271 – 282.en_US
dc.identifier.citedreferenceHeagle AS, Philbeck RB, Ferrell RE, Heck WW. 1989. Design and performance of a large, field exposure chamber to measure effects of air quality on plants, Journal of Environmental Quality 18 : 361 – 368.en_US
dc.identifier.citedreferenceIdso SB, Kimball BA, Allen SG. 1991. Net photosynthesis of Sour orange trees maintained in atmospheres of ambient and elevated CO 2 concentration. Agricultural and Forest Meteorology 54 : 95 – 101.en_US
dc.identifier.citedreferenceJones MGK, Outlaw WHJ, Lowry OH. 1977. Enzymic assay of 10 (-7) to 10 (-14) moles of sucrose in plant tissues. Plant Physiology 60 : 379 – 383.en_US
dc.identifier.citedreferenceKramer PJ. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31 : 29 – 33.en_US
dc.identifier.citedreferenceLewis JD, Griffin KL, Thomas RB, Strain B. 1994, Phosphorus supply affects the photosynthetic capacity of loblolly pine grown in elevated carbon dioxide. Tree Physiology 14 : 1229 – 1244.en_US
dc.identifier.citedreferenceMcConnaughay KDM, Berntson GM, Bazzaz F. 1993. Limitations to CO 2 -induced growth enhancement in pot studies. Oecologia 94 : 550 – 557.en_US
dc.identifier.citedreferenceNorby RJ, Gunderson CA, Wullschleger SD, O'Neill EG, McCracken MK. 1992. Productivity and compensatory responses of yellow-poplar trees in elevated CO 2. Nature 357 : 322 – 324.en_US
dc.identifier.citedreferencePettersson R, McDonald AJS. 1992. Effects of elevated carbon dioxide concentration on photosynthesis and growth of small birch plants ( Betula pendula Roth.) at optimal nutrition. Plant, Cell and Environment 15 : 911 – 919.en_US
dc.identifier.citedreferencePoorter H, Gilford RM, Kriedemann PE, Wong SC. 1992. A quantitative analysis of dark respiration and carbon content as factors in the growth response of plants to elevated CO 2. Australian Journal of Botany 40 : 501 – 513.en_US
dc.identifier.citedreferencePregitzer KS, Zak DR, Curtis PS, Kubiske ME, Teeri JA, Vogel CS. 1995. Atmospheric CO 2, soil nitrogen, and fine root turnover. New Phytologist ( in the press ).en_US
dc.identifier.citedreferenceRadoglou KM, Jarvis PG. 1990. Effects of CO 2 enrichment on four poplar clones. I. Growth and leaf anatomy. Annals of Botany 65 : 617 – 626.en_US
dc.identifier.citedreferenceSage RF. 1994. Acclimation of photosynthesis to increasing atmospheric CO 2 : The gas exchange perspective. Photosynthesis Research 39 : 351 – 368.en_US
dc.identifier.citedreferenceSage RF, Sharkey TD, Seemann JR. 1989. Acclimation of photosynthesis to elevated CO 2 in five C 3, species. Plant Physiology 89 : 590 – 596.en_US
dc.identifier.citedreferenceSasek TW, DeLucia EH, Strain BR. 1985. Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO 2 concentrations. Plant Physiology 78 : 619 – 622.en_US
dc.identifier.citedreferenceSasek TW, Strain BR. 1989. Effects of carbon dioxide enrichment on the expansion and size of Kudzu ( Pueraria lobata ) leaves. Weed Science 37 : 23 – 28.en_US
dc.identifier.citedreferenceSharkey TD. 1985. Photosynthesis in intact leaves of C 3 plants: physics, physiology and rate limitations. The Botanical Review 51 : 54 – 75.en_US
dc.identifier.citedreferenceSharkey TD, Vanderveer PJ. 1989. Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiology 91 : 679 – 684.en_US
dc.identifier.citedreferenceSokal RR, Rohlf FJ. 1981. Biometry. San Francisco : WH Freeman Co.en_US
dc.identifier.citedreferenceStitt M. 1991. Rising CO 2 levels and their potential significance for carbon How in photosynthetic cells, Plant, Cell and Environment 14 : 741 – 762.en_US
dc.identifier.citedreferenceStrain BR. 1985, Physiological and ecological controls on carbon sequestering in terrestrial ecosystems. Biogeochemistry 1 : 219 – 232.en_US
dc.identifier.citedreferenceTerry N, Waldron LJ, Taylor SE. 1983. Environmental influences on leaf expansion. In : Dale JE, Milthorne FLM, eds. The growth and functioning of leaves. Cambridge : Cambridge University Press. 179 – 203.en_US
dc.identifier.citedreferenceTissue DT, Oechel WC. 1987. Responses of Eriophorum vaginatum to elevated CO 2 and temperature in the Alaskan tussock tundra. Ecology 68 : 401 – 410.en_US
dc.identifier.citedreferenceWong SC, Kriedemann PE, Farquhar GD. 1992. CO 2 × nitrogen interaction on seedling growth of four species of eucalypt. Australian Journal of Botany 40 : 457 – 472.en_US
dc.identifier.citedreferenceWullschleger SD, Norby RJ, Hendrix DL. 1992. Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiology 10 : 21 – 31.en_US
dc.identifier.citedreferenceZak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL. 1993. Elevated atmospheric CO 2 and feedback between carbon and nitrogen cycles. Plant and Soil 151 : 105 – 117.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.