Show simple item record

Hypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the rat

dc.contributor.authorLi, Yingen_US
dc.contributor.authorWu, Xiaoyinen_US
dc.contributor.authorZhu, Jinxiaen_US
dc.contributor.authorYan, Jinen_US
dc.contributor.authorOwyang, Chungen_US
dc.date.accessioned2010-04-01T15:11:56Z
dc.date.available2010-04-01T15:11:56Z
dc.date.issued2003-10en_US
dc.identifier.citationLi, Ying; Wu, Xiaoyin; Zhu, Jinxia; Yan, Jin; Owyang, Chung (2003). "Hypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the rat." The Journal of Physiology 552(2): 571-587. <http://hdl.handle.net/2027.42/65667>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65667
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14561838&dopt=citationen_US
dc.format.extent1429916 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishingen_US
dc.rights© The Physiological Society 2003en_US
dc.titleHypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the raten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumGastroenterology Research Unit, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid14561838en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65667/1/j.1469-7793.2003.00571.x.pdf
dc.identifier.doi10.1111/j.1469-7793.2003.00571.xen_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceBellinger LL & Bernardis LL ( 2002 ). The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiol Behav 76, 431 – 442.en_US
dc.identifier.citedreferenceBlume HW, Pittman QJ, Lafontaine S & Renaud LP ( 1982 ). Lateral septum-medial hypothalamic connections: an electrophysiological study in the rat. Neuroscience 7, 2783 – 2792.en_US
dc.identifier.citedreferenceBook AA, Wiley RG & Schweitzer JB ( 1992 ). Specificity of 192 IgG-saporin for NGF receptor-positive cholinergic basal forebrain neurons in the rat. Brain Res 590, 350 – 355.en_US
dc.identifier.citedreferenceBrezenoff HE & Caputi AP ( 1980 ). Intracerebroventricular injection of hemicholinium-3 lowers blood pressure in conscious spontaneously hypertensive rats but not in normotensive rats. Life Sci 26, 1037 – 1045.en_US
dc.identifier.citedreferenceBrezenoff HE & Rusin J ( 1974 ). Brain acetylcholine mediates the hypertensive response to physostigmine in the rat. Eur J Pharmacol 29, 262 – 266.en_US
dc.identifier.citedreferenceButcher LL & Woolf NJ ( 1984 ). Histochemical distribution of acetylcholinesterase in the central nervous system: clues to the localization of cholinergic neurons. In Handbook of Chemical Neuroanatomy, ed. BjÖrklund A, HÖkfelt T & Kuhar MJ, pp. 1 – 50. Elsevier, Amsterdamen_US
dc.identifier.citedreferenceCallera JC, Bonagamba LH, Sevoz C, Laguzzi R & Machado BH ( 1997 ). Cardiovascular effects of microinjection of low doses of serotonin into the NTS of unanesthetized rats. Am J Physiol 272, R1135 – 1142.en_US
dc.identifier.citedreferencede Varis B, Roffel AF, Zaagsma J & Meurs H ( 2001 ). Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle. Eur J Pharmacol 431, 353 – 359.en_US
dc.identifier.citedreferenceDiRocco RJ & Grill HJ ( 1979 ). The forebrain is not essential for sympathoadrenal hyperglycemic response to glucoprivation. Science 204, 1112 – 1114.en_US
dc.identifier.citedreferenceFreeman JJ, Macri JR, Choi RL & Jenden DJ ( 1979 ). Studies on the behavioral and biochemical effects of hemicholinium in vivo. J Pharmacol Exp Ther 210, 91 – 97.en_US
dc.identifier.citedreferenceFulwiler CE & Saper CB ( 1984 ). Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 7, 229 – 259.en_US
dc.identifier.citedreferenceGage FH, Batchelor P, Chen KS, Chin D, Higgins GA, Koh S, Deputy S, Rosenberg MB, Fisher W & BjÖrklund A ( 1989 ). NGF receptor reexpression and NGF-mediated cholinergic neuronal hypertrophy in the damaged adult neostriatum. Neuron 2, 1177 – 1184.en_US
dc.identifier.citedreferenceGilsdorf RB, Pearl JM & Leonard AS ( 1966 ). Central autonomic influences on pancreatic duct pressure and secretory rates. Surg Forum 17, 341 – 342.en_US
dc.identifier.citedreferenceGrill HJ & Norgren R ( 1978 ). The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res 143, 281 – 297.en_US
dc.identifier.citedreferenceHalsell CB & Frank ME ( 1991 ). Mapping study of the parabrachial taste-responsive area for the anterior tongue in the golden hamster. J Comp Neurol 306, 708 – 722.en_US
dc.identifier.citedreferenceHasler WL, Kim MS, Chey WD, Stevenson V, Stein B & Owyang C ( 1995 ). Central cholinergic and alpha-adrenergic mediation of gastric slow wave dysrhythmias evoked during motion sickness. Am J Physiol 268, G539 – 547.en_US
dc.identifier.citedreferenceHeckers S, Ohtake T, Wiley RG, Lappi DA, Geula C & Mesulam MM ( 1994 ). Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J Neurosci 14, 1271 – 1289.en_US
dc.identifier.citedreferenceHerbert H, Moga MM & Saper CB ( 1990 ). Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293, 540 – 580.en_US
dc.identifier.citedreferenceJansen AS, Hoffman JL & Loewy AD ( 1997 ). CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res 766, 29 – 38.en_US
dc.identifier.citedreferenceJohnson DA, Zambon NJ & Gibbs RB ( 2002 ). Selective lesion of cholinergic neurons in the medial septum by 192 IgG-saporin impairs learning in a delayed matching to position T-maze paradigm. Brain Res 943, 132 – 141.en_US
dc.identifier.citedreferenceKarimnamazi H, Travers SP & Travers JB ( 2002 ). Oral and gastric input to the parabrachial nucleus of the rat. Brain Res 957, 193 – 206.en_US
dc.identifier.citedreferenceKendrick KM, ( 1983 ). Effect of testosterone on medial preoptic/anterior hypothalamic neurone responses to stimulation of the lateral septum. Brain Res 262, 137 – 142.en_US
dc.identifier.citedreferenceKimura H, McGeer PL & Peng JH ( 1984 ). Choline acetyltransferase containing-neurons in the rat brain. In Handbook of Chemical Neuroanatomy, ed. BjÖrklund A, HÖkfelt T & Kuhar MJ, pp. 51 – 67. Elsevier, Amsterdamen_US
dc.identifier.citedreferenceLee MG, Chrobak JJ, Sik A, Wiley RG & Buzsaki G ( 1994 ). Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62, 1033 – 1047.en_US
dc.identifier.citedreferenceLi Y, Hao Y & Owyang C ( 1997 ). High-affinity CCK-A receptors on the vagus nerve mediate CCK-stimulated pancreatic secretion in rats. Am J Physiol 273, G679 – 685.en_US
dc.identifier.citedreferenceLi Y, Hao Y, Zhu J & Owyang C ( 2000 ). Serotonin released from intestinal enterochromaffin cells mediates luminal non-CCK-stimulated pancreatic secretion. Gastroenterology 118, 1197 – 1207.en_US
dc.identifier.citedreferenceLi Y, Jiang YC & Owyang C ( 1998 ). Central CGRP inhibits pancreatic enzyme secretion by modulation of vagal parasympathetic outflow. Am J Physiol 275, G957 – 963.en_US
dc.identifier.citedreferenceLi Y & Owyang C ( 1993a ). Somatostatin inhibits pancreatic enzyme secretion at a central vagal site. Am J Physiol 265, G251 – 257.en_US
dc.identifier.citedreferenceLi Y & Owyang C ( 1993b ). Vagal afferent pathway mediates physiological action of cholecystokinin on pancreatic enzyme secretion. J Clin Invest 92, 418 – 424.en_US
dc.identifier.citedreferenceLi Y & Owyang C ( 1994 ). Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology 107, 525 – 531.en_US
dc.identifier.citedreferenceLi Y & Owyang C ( 1996a ). Pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent duodenal stimuli via vagal afferent fibers in the rat. J Physiol 494, 773 – 782.en_US
dc.identifier.citedreferenceLi Y & Owyang C ( 1996b ). Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons. J Clin Invest 97, 1463 – 1470.en_US
dc.identifier.citedreferenceLi Y, Zhu JX & Owyang C ( 1999 ). Electrical physiological evidence for high- and low-affinity vagal CCK-A receptors. Am J Physiol 277, G469 – 477.en_US
dc.identifier.citedreferenceLoewy AD & Haxhiu MA ( 1993 ). CNS cell groups projecting to pancreatic parasympathetic preganglionic neurons. Brain Res 620, 323 – 330.en_US
dc.identifier.citedreferenceLu WY & Bieger D ( 1998 ). Vagal afferent transmission in the NTS mediating reflux responses of the rat esophagus. Am J Physiol 224, R1436 – 1445.en_US
dc.identifier.citedreferenceMichelini LC & Bonagamba LG ( 1988 ). Baroreceptor reflex modulation by vasopressin microinjected into the nucleus tractus solitarii of conscious rats. Hypertension 11, I75 – I79.en_US
dc.identifier.citedreferenceMichl T, Jocic M, Heinemann A, Schuligoi R & Holzer P ( 2001 ). Vagal afferent signaling of a gastric mucosal acid insult to medullary, pontine, thalamic, hypothalamic and limbic, but not cortical, nuclei of rat brain. Pain 92, 19 – 27.en_US
dc.identifier.citedreferenceMine K, Tsuruta N, Nakai Y, KataokA, Y, Fujiwara M, Ueki S & Nakagawa T ( 1985 ). Effects of small amygdaloid lesions on pancreatic exocrine secretion. Brain Res 340, 9 – 18.en_US
dc.identifier.citedreferenceNishimura H & Oomura Y ( 1987 ). Effects of hypothalamic stimulation on activity of dorsomedial medulla neurons that respond to subdiaphragmatic vagal stimulation. J Neurophysiol 58, 655 – 675.en_US
dc.identifier.citedreferenceOkita M, Inui A, Baba S & Kasuga M ( 1997 ). Central cholinergic regulation of pancreatic polypeptide secretion in conscious dogs. J Endocrinol 154, 311 – 317.en_US
dc.identifier.citedreferenceOkumura T, Pappas TN & Taylor IL ( 1995a ). Pancreatic polypeptide microinjection into the dorsal motor nucleus inhibits pancreatic secretion in rats. Gastroenterology 108, 1517 – 1525.en_US
dc.identifier.citedreferenceOkumura T, Taylor IL & Pappas TN ( 1995b ). Microinjection of TRH analogue into the dorsal vagal complex stimulates pancreatic secretion in rats. Am J Physiol 269, G328 – 334.en_US
dc.identifier.citedreferenceOorjitham EG, Godfrey DA, Ross CD & Dunn JD ( 1989 ). Effect of septal ablation on choline acetyltransferase in the paraventricular nucleus. Brain Res Bull 22, 277 – 282.en_US
dc.identifier.citedreferencePavlov IP, ( 1910 ). The Work of the Digestive Glands. C. Griffin and Company, Londonen_US
dc.identifier.citedreferencePaxinos G & Watson C ( 1998 ). The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diegoen_US
dc.identifier.citedreferencePedigo NW Jr & Brizzee KR ( 1985 ). Muscarinic cholinergic receptors in area postrema and brainstem areas regulating emesis. Brain Res Bull 14, 169 – 177.en_US
dc.identifier.citedreferencePortillo F, Carrasco M & Vallo JJ ( 1996 ). Hypothalamic neuron projection to autonomic preganglionic levels related with glucose metabolism: a fluorescent labelling study in the rat. Neurosci Lett 210, 197 – 200.en_US
dc.identifier.citedreferenceQuirion R, ( 1985 ). Comparative localization of putative pre- and postsynaptic markers of muscarinic cholinergic nerve terminals in rat brain. Eur J Pharmacol 111, 287 – 289.en_US
dc.identifier.citedreferenceQuirion R & Boksa P ( 1986 ). Autoradiographic distribution of muscarinic [3H]acetylcholine receptors in rat brain: comparison with antagonists. Eur J Pharmacol 123, 170 – 172.en_US
dc.identifier.citedreferenceRainbow TC, Schwartz RD, Parsons B & Kellar KJ ( 1984 ). Quantitative autoradiography of nicotinic [ 3 H]acetylcholine binding sites in rat brain. Neurosci Lett 50, 193 – 196.en_US
dc.identifier.citedreferenceRisold PY & Swanson LW ( 1997 ). Connections of the rat lateral septal complex. Brain Res Brain Res Rev 24, 115 – 195.en_US
dc.identifier.citedreferenceRogers RC, McTigue, Dm And Hermann GE ( 1996 ). Vagal control of digestion: modulation by central neural and peripheral endocrine factors. Neurosci Biobehav Rev 20, 57 – 66.en_US
dc.identifier.citedreferenceRuggiero DA, Giuliano R, Anwar M, Stornetta R & Reis DJ ( 1990 ). Anatomical substrates of cholinergic-autonomic regulation in the rat. J Comp Neurol 292, 1 – 53.en_US
dc.identifier.citedreferenceRye DB, Saper CB, Lee HJ & Wainer BH ( 1987 ). Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259, 483 – 528.en_US
dc.identifier.citedreferenceSaper CB & Loewy AD ( 1980 ). Efferent connections of the parabrachial nucleus in the rat. Brain Res 197, 291 – 317.en_US
dc.identifier.citedreferenceSarles H, Dani R, Prezelin G, Souville C & Figarella C ( 1968 ). Cephalic phase of pancreatic secretion in man. Gut 9, 214 – 221.en_US
dc.identifier.citedreferenceSiren AL, Vonhof S & Feuerstein G ( 1991 ). Hemodynamic defense response to thyrotropin-releasing hormone injected into medial preoptic nucleus in rats. Am J Physiol 261, R305 – 312.en_US
dc.identifier.citedreferenceSteiner E, ( 1973 ). The gustofacial response: observation on normal and anencephalic newborn infants. Symp Oral Sens Percept 4, 254 – 278.en_US
dc.identifier.citedreferenceTang PC, ( 1955 ). Levels of brain stem and diencephalon controlling micturition reflux. J Neurophysiol 18, 583 – 595.en_US
dc.identifier.citedreferenceTaylor IL, ( 1989 ). Pancreatic polypeptide family: pancreatic polypeptide, neuropeptide Y, and peptide YY. In Handbook of Physiology, ed. Rauner BB, Maklouf GM & Schultz SG, pp. 475 – 543. American Physiological Society, Bethesda, MDen_US
dc.identifier.citedreferenceTomic-Beleslin N & Beleslin DB ( 1986 ). Salivation mediated by central M-2 muscarinic receptors in the cat. Brain Res Bull 17, 279 – 281.en_US
dc.identifier.citedreferenceWang L, Cardin S, Martinez V, Tache Y & Lloyd KC ( 1999 ). Duodenal loading with glucose induces fos expression in rat brain: selective blockade by devazepide. Am J Physiol 277, R667 – 674.en_US
dc.identifier.citedreferenceWenk GL, Stoehr JD, Quintana G, Mobley S & Wiley RG ( 1994 ). Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 14, 5986 – 5995.en_US
dc.identifier.citedreferenceWhittaker VP, ( 1988 ). The cholinergic synapse. In Handbook of Experimental Pharmacology, ed. Whittaker VP, pp. 125 – 165. Springer Verlag, New Yorken_US
dc.identifier.citedreferenceWiley RG, ( 1992 ). Neural lesioning with ribosome-inactivating proteins: suicide transport and immunolesioning. Trends Neurosci 15, 285 – 290.en_US
dc.identifier.citedreferenceWu XY, Zhao Y, Owyang C & Li Y ( 2001 ). Neural circuitry in the dorsal motor nucleus of vagus modulating efferent signalling to the pancreas. Digestion 63, 260 (abstract)en_US
dc.identifier.citedreferenceWu YX, Zhao Y, Owyang C & Li Y ( 2002 ). Characterization of the neuronal circuitry in the dorsal motor nucleus of the vagus modulating vagal efferent signalling to the pancreas: electrophysiological and immunocytochemistry studies. Gastroenterology 122, A-37 (abstract)en_US
dc.identifier.citedreferenceYoshimatsu H, Nijima A, Oomura Y & Katafuchi T ( 1988 ). Lateral and ventromedial hypothalamic influences on hepatic autonomic nerve activity in the rat. Brain Res Bull 21, 239 – 244.en_US
dc.identifier.citedreferenceZhang X, Fogel R & Renehan WE ( 1999 ). Stimulation of the paraventricular nucleus modulates the activity of gut-sensitive neurons in the vagal complex. Am J Physiol 277, G79 – 90.en_US
dc.identifier.citedreferenceZhu JX, Wu XY, Owyang C & Li Y ( 2001 ). Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol 530, 431 – 442.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.