Show simple item record

In Vivo Imaging of Vesicular Monoamine Transporters in Human Brain Using [ 11 C]Tetrabenazine and Positron Emission Tomography

dc.contributor.authorKilbourn, Michael R.en_US
dc.contributor.authorDaSilva, Jean N.en_US
dc.contributor.authorFrey, Kirk A.en_US
dc.contributor.authorKoeppe, Robert A.en_US
dc.contributor.authorKuhl, David E.en_US
dc.date.accessioned2010-04-01T15:16:18Z
dc.date.available2010-04-01T15:16:18Z
dc.date.issued1993-06en_US
dc.identifier.citationKilbourn, Michael R.; DaSilva, Jean N.; Frey, Kirk A.; Koeppe, Robert A.; Kuhl, David E. (1993). "In Vivo Imaging of Vesicular Monoamine Transporters in Human Brain Using [ 11 C]Tetrabenazine and Positron Emission Tomography." Journal of Neurochemistry 60(6): 2315-2318. <http://hdl.handle.net/2027.42/65743>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65743
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8492135&dopt=citationen_US
dc.description.abstractThe pharmacokinetics of [ 11 CJtetrabenazine, a high-affinity radioligand for the monoamine vesicular transporter, were determined in living human brain using in vivo imaging by positron emission tomography (PET). The radiotracer showed high brain uptake and rapid washout from all brain regions with relatively slower clearance from regions of highest concentrations of monoamine vesicular transporters (striatum), resulting in clear differential visualization of these structures at short intervals after injection (10–20 min). As the first human PET imaging study of a vesicular neurotransmitter transporter, these experiments demonstrate that external imaging of vesicular transporters forms a new and valuable approach to the in vivo quantification of monoaminergic neurons, with potential application to the in vivo study of neurodegenerative disorders such as Parkinson's disease.en_US
dc.format.extent602214 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1993 International Society for Neurochemistryen_US
dc.subject.otherPositron Emission Tomographyen_US
dc.subject.other[ 11 C]Tetrabenazineen_US
dc.subject.otherVesicleen_US
dc.subject.otherTransporteren_US
dc.subject.otherMonoamineen_US
dc.subject.otherParkinson's Diseaseen_US
dc.subject.otherStriatum.en_US
dc.titleIn Vivo Imaging of Vesicular Monoamine Transporters in Human Brain Using [ 11 C]Tetrabenazine and Positron Emission Tomographyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Nuclear Medicine, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid8492135en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65743/1/j.1471-4159.1993.tb03521.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1993.tb03521.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceDaSilva J. N. and Kilbourn M. R. ( 1992 ) In vivo binding of [ 11 C]tetrabenazine to vesicular monoamine transporters in mouse brain. Life Sci. 51, 593 – 600.en_US
dc.identifier.citedreferenceDaSilva J. N., Kilbourn M. R., Koeppe R. A., Sherman P., Pisani T., and Mangner T. J. ( 1992 ) In vivo mouse brain biodistribution and monkey PET imaging of [C- 11 ]tetrabenazine, a new PET marker for monoaminergic neurons. J. Nucl. Med. 33, 870.en_US
dc.identifier.citedreferenceDaSilva J. N., Kilbourn M. R., and Mangner T. J. ( 1993 ) Synthesis of [ 11 C]tetrabenazine, a vesicular monoamine uptake inhibitor, for PET imaging studies. Appl. Radial. Isot. ( in press ).en_US
dc.identifier.citedreferenceFrey K. A., Koeppe R. A., Mulholland G. K., and Kuhl D. E. ( 1990 ) Quantification of regional cerebral muscarinic receptors in human brain with the use of [C-11]tropanylbenzilate and positron emission tomography. J. Nucl. Med. 31, 779.en_US
dc.identifier.citedreferenceGiros B., El Mestikawy S., Godinot N., Zheng K., Han H., Yang-Feng T., and Caron M. G. ( 1992 ) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol. Pharmacol. 42, 383 – 390.en_US
dc.identifier.citedreferenceGjedde A., Reith J., Dyve S., Leger G., Guttman M., Diksic M., Evans A., and Kuwabara H. ( 1991 ) Dopa decarboxylase activity of the living human brain. Proc. Natl. Acad. Sci. USA 88, 2721 – 2725.en_US
dc.identifier.citedreferenceHadjiconstantinou M., Wemlinger T., Hubble J. P., Silvia C. P., and Neff N. H. ( 1992 ) Modulation of dopa decarboxylase in the striatum of a mouse model of Parkinson's disease. Soc. Neurosci. Abstr. 18, 664.en_US
dc.identifier.citedreferenceHenry J.-P. and Scherman D. ( 1989 ) Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem. Pharmacol. 38, 2395 – 2404.en_US
dc.identifier.citedreferenceIkegami H. and Prasad C. ( 1990 ) Neuropeptide-dopamine interactions. V. Cyclo(His-Pro) regulation of the striatal dopamine transporter complex. Peptides 11, 145 – 148.en_US
dc.identifier.citedreferenceJung Y.-W., Van Dort M. E., Gildersleeve D. L., and Wieland D. M. ( 1990 ) A radiotracer for mapping cholinergic neurons of the brain. J. Med. Chem. 33, 2065 – 2068.en_US
dc.identifier.citedreferenceKilbourn M. R., Jung Y.-W., Haka M. S., Gildersleeve D. L., Kuhl D. E., and Wieland D. M. ( 1990 ) Mouse brain distribution of a carbon-11 labeled vesamicol derivative: presynaptic marker for cholinergic neurons. Life Sci. 47, 1955 – 1963.en_US
dc.identifier.citedreferenceKilbourn M. R., Sherman P. S., and Pisani T. ( 1992 ) Repeated reserpine treatment reduces in vivo [ 18 F]GBR 13119 binding to the dopamine uptake site. Eur. J. Pharmacol. 216, 109 – 112.en_US
dc.identifier.citedreferenceKoeppe R. A., Holthoff V. A., Frey K. A., Kilbourn M. R., and Kuhl D. E. ( 1991 ) Compartmental analysis of [ 11 C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J. Cereb. Blood Flow Metab. 11, 735 – 744.en_US
dc.identifier.citedreferenceLeenders K. L. ( 1991 ) [ 18 F]Fluorodopa uptake in brain, in Brain Dopaminergic Systems: Imaging with Positron Tomography ( Baron J. C, Comar D., Farde L., Martinet J. L., and Mazoyer B., eds ), pp. 97 – 110. Kluwer Academic Press, Dordrecht, the Netherlands.en_US
dc.identifier.citedreferenceLiu Y., Peter D., Roghani A., Schuldiner S., Prive G. G., Eisenberg D., Brecha K, and Edwards R. H. ( 1992 ) A cDNA that suppresses MPP + toxicity encodes a vesicular amine transporter. Cell 70, 539 – 551.en_US
dc.identifier.citedreferenceMasuo Y., Pelaprat D., Scherman D., and Rostene W. ( 1990 ) [ 3 H]Dihydrotetrabenazine, a new marker for the visualization of dopaminergic denervation in the rat striatum. Neurosci. Lett. 114, 45 – 50.en_US
dc.identifier.citedreferenceMcGeer E. G., Calne D., Snow B., Tooyama I., Takabashi H., and Yamada T. ( 1992 ) Correlation of postmortem striatal dopamine levels with nigral cell counts and uptake of 18 F-fluorodopa in premortem PET scans. Soc. Neurosci. Abstr. 18, 665.en_US
dc.identifier.citedreferencePletscher A., Brossi A., and Gey K. F. ( 1962 ) Benzoquinoline derivatives: a new class of monoamine decreasing drugs with psychotropic action. Int. Rev. Neurobiol. 4, 275 – 306.en_US
dc.identifier.citedreferenceSalmon E. ( 1991 ) Dopamine reuptake sites: the issues, in Brain Dopaminergic Systems: Imaging with Positron Tomography ( Baron J. C., Comar D., Farde L., Martinet J. L., and Mazoyer B., eds ), pp. 111 – 119. Kluwer Academic Press, Dordrecht, the Netherlands.en_US
dc.identifier.citedreferenceScheffel U., Steinert C. L., Kuhar M. J., and Neumeyer J. L. ( 1991 ) Effect of endogenous dopamine on 3 H WIN 35-428 binding to dopamine uptake sites. J. Nud. Med. 32, 1069.en_US
dc.identifier.citedreferenceScherman D., Desnos C., Darchen F., Pollak P., Javoy-Agid F., and Agid Y. ( 1989 ) Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann. Neural. 26, 551 – 557.en_US
dc.identifier.citedreferenceSharpe L. G., Pilotte N. S., Mitchell W. M., and DeSouza E. B. ( 1991 ) Withdrawal of repeated cocaine decreases autoradiographic [ 3 H]mazindol-labeling of dopamine transporter in rat nucleus accumbens. Eur. J. Pharmacol. 203, 141 – 144.en_US
dc.identifier.citedreferenceUhl G. R. ( 1992 ) Neurotransmitter transporters (plus): a promising new gene family. Trends Neurosci. 15, 265 – 268.en_US
dc.identifier.citedreferenceWiden L., Eriksson L., Ingvar M., Parsons S. M., Rogers G. A., and Stone-Elander S. ( 1992 ) Positron emission tomographic studies of cholinergic nerve terminals. Neurosci. Lett. 136, 1 – 4.en_US
dc.identifier.citedreferenceWiener H. L., Hashim A., Lajtha A., and Sershen H. ( 1989 ) Chronic L-deprenyl-induced up-regulation of the dopamine uptake carrier. Eur. J. Pharmacol. 163, 191 – 194.en_US
dc.identifier.citedreferenceZhu M. Y., Juorio A. V., Paterson I. A., and Boulton A. A. ( 1992 ) Regulation of aromatic amino L-amino acid decarboxylase by dopamine receptors in the rat brain. J. Neurochem. 58, 636 – 641.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.