Show simple item record

The TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathy

dc.contributor.authorHong, Shuangsongen_US
dc.contributor.authorAgresta, Lauraen_US
dc.contributor.authorGuo, Chunfangen_US
dc.contributor.authorWiley, John W.en_US
dc.date.accessioned2010-04-01T15:21:57Z
dc.date.available2010-04-01T15:21:57Z
dc.date.issued2008-05en_US
dc.identifier.citationHong, Shuangsong; Agresta, Laura; Guo, Chunfang; Wiley, John W. (2008). "The TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathy." Journal of Neurochemistry 105(4): 1212-1222. <http://hdl.handle.net/2027.42/65841>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65841
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18182051&dopt=citationen_US
dc.format.extent648243 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 International Society for Neurochemistryen_US
dc.subject.otherCalpainen_US
dc.subject.otherDiabetic Neuropathyen_US
dc.subject.otherDorsal Root Ganglionen_US
dc.subject.otherNeuronal Injuryen_US
dc.subject.otherRaten_US
dc.subject.otherTransient Receptor Potential Vanilloid 1en_US
dc.titleThe TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid18182051en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65841/1/j.1471-4159.2008.05220.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2008.05220.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceArrington D., Van V. T. and Schnellmann R. ( 2006 ) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am. J. Physiol. Cell Physiol. 291, 1159 – 1171.en_US
dc.identifier.citedreferenceBernardi P. ( 1999 ) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127 – 1155.en_US
dc.identifier.citedreferenceBiggs J. E., Yates J. M., Loescher A. R., Clayton N. M., Boissonade F. M. and Robinson P. P. ( 2007 ) Changes in vanilloid receptor 1 (TRPV1) expression following lingual nerve injury. Eur. J. Pain 11, 192 – 201.en_US
dc.identifier.citedreferenceBloomgarden Z. T. ( 2006 ) Weight control in individuals with diabetes. Diabetes Care 29, 2749 – 2754.en_US
dc.identifier.citedreferenceBoulton A. J. and Malik R. A. ( 1998 ) Diabetic neuropathy. Med. Clin. North Am. 82, 909 – 929.en_US
dc.identifier.citedreferenceCaterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D. and Julius D. ( 1997 ) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816 – 824.en_US
dc.identifier.citedreferenceCaterina M. J., Leffler A., Malmberg A. B., Martin W. J., Trafton J., Petersen-Zeitz K. R., Koltzenburg M., Basbaum A. I. and Julius D. ( 2000 ) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306 – 313.en_US
dc.identifier.citedreferenceCheng C. and Zochodne D. W. ( 2003 ) Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 52, 2363 – 2371.en_US
dc.identifier.citedreferenceChristoph T., Grunweller A., Mika J., Schafer M. K., Wade E. J., Weihe E., Erdmann V. A., Frank R., Gillen C. and Kurreck J. ( 2006 ) Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem. Biophys. Res. Commun. 350, 238 – 243.en_US
dc.identifier.citedreferenceDavis J. B., Gray J., Gunthorpe M. J. et al. ( 2000 ) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183 – 187.en_US
dc.identifier.citedreferenceDi Noia M. A., Van D. S., Palmieri F., Yang L. M., Quan S., Goodman A. I. and Abraham N. G. ( 2006 ) Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome C oxidase activity in experimental diabetes. J. Biol. Chem. 281, 15687 – 15693.en_US
dc.identifier.citedreferenceGuseva D. and Chelyshev Y. ( 2006 ) The plasticity of the DRG neurons belonging to different subpopulations after dorsal rhizotomy. Cell. Mol. Neurobiol. 26, 1223 – 1232.en_US
dc.identifier.citedreferenceHarwood S. M., Yaqoob M. M. and Allen D. A. ( 2005 ) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann. Clin. Biochem. 42, 415 – 431.en_US
dc.identifier.citedreferenceHong S. and Wiley J. W. ( 2005 ) Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J. Biol. Chem. 280, 618 – 627.en_US
dc.identifier.citedreferenceHuang Y. and Wang K. K. ( 2001 ) The calpain family and human disease. Trends Mol. Med. 7, 355 – 362.en_US
dc.identifier.citedreferenceJambrina E., Alonso R., Alcalde M., del Carmen R. M., Serrano A., Martinez A., Garcia-Sancho J. and Izquierdo M. ( 2003 ) Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death. J. Biol. Chem. 278, 14134 – 14145.en_US
dc.identifier.citedreferenceKaur P., Radotra B., Minz R. W. and Gill K. D. ( 2007 ) Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicology 28, 1208 – 1219.en_US
dc.identifier.citedreferenceKim S. R., Lee d. Y., Chung E. S., Oh U. T., Kim S. U. and Jin B. K. ( 2005 ) Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J. Neurosci. 25, 662 – 671.en_US
dc.identifier.citedreferenceKishi M., Tanabe J., Schmelzer J. D. and Low P. A. ( 2002 ) Morphometry of dorsal root ganglion in chronic experimental diabetic neuropathy. Diabetes 51, 819 – 824.en_US
dc.identifier.citedreferenceLankiewicz S., Marc L. C., Truc B. N., Krohn A. J., Poppe M., Cole G. M., Saido T. C. and Prehn J. H. ( 2000 ) Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J. Biol. Chem. 275, 17064 – 17071.en_US
dc.identifier.citedreferenceLau A., Arundine M., Sun H. S., Jones M. and Tymianski M. ( 2006 ) Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J. Neurosci. 26, 11540 – 11553.en_US
dc.identifier.citedreferenceLawson S. N. ( 2002 ) Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres. Exp. Physiol. 87, 239 – 244.en_US
dc.identifier.citedreferenceLeinninger G. M., Vincent A. M. and Feldman E. L. ( 2004 ) The role of growth factors in diabetic peripheral neuropathy. J. Peripher. Nerv. Syst. 9, 26 – 53.en_US
dc.identifier.citedreferenceLeski M. L., Bao F., Wu L., Qian H., Sun D. and Liu D. ( 2001 ) Protein and DNA oxidation in spinal injury: neurofilaments – an oxidation target. Free Radic. Biol. Med. 30, 613 – 624.en_US
dc.identifier.citedreferenceLiu Q., Xie F., Siedlak S. L., Nunomura A., Honda K., Moreira P. I., Zhua X., Smith M. A. and Perry G. ( 2004a ) Neurofilament proteins in neurodegenerative diseases. Cell Mol. Life Sci. 61, 3057 – 3075.en_US
dc.identifier.citedreferenceLiu X., Van V. T. and Schnellmann R. G. ( 2004b ) The role of calpain in oncotic cell death. Annu. Rev. Pharmacol. Toxicol. 44, 349 – 370.en_US
dc.identifier.citedreferenceLiu-Snyder P., Borgens R. B. and Shi R. ( 2006 ) Hydralazine rescues PC12 cells from acrolein-mediated death. J. Neurosci. Res. 84, 219 – 227.en_US
dc.identifier.citedreferenceMandic A., Viktorsson K., Strandberg L., Heiden T., Hansson J., Linder S. and Shoshan M. C. ( 2002 ) Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol. Cell. Biol. 22, 3003 – 3013.en_US
dc.identifier.citedreferenceMcHugh J. M. and McHugh W. B. ( 2004 ) Diabetes and peripheral sensory neurons: what we don’t know and how it can hurt us. AACN. Clin. Issues 15, 136 – 149.en_US
dc.identifier.citedreferenceMizisin A. P., Calcutt N. A., Tomlinson D. R., Gallagher A. and Fernyhough P. ( 1999 ) Neurotrophin-3 reverses nerve conduction velocity deficits in streptozotocin-diabetic rats. J. Peripher. Nerv. Syst. 4, 211 – 221.en_US
dc.identifier.citedreferenceNakagawa T. and Yuan J. ( 2000 ) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887 – 894.en_US
dc.identifier.citedreferencePop-Busui R., Sima A. and Stevens M. ( 2006 ) Diabetic neuropathy and oxidative stress. Diabetes Metab. Res. Rev. 22, 257 – 273.en_US
dc.identifier.citedreferencePosmantur R. M., Kampfl A., Liu S. J., Heck K., Taft W. C., Clifton G. L. and Hayes R. L. ( 1996 ) Cytoskeletal derangements of cortical neuronal processes three hours after traumatic brain injury in rats: an immunofluorescence study. J. Neuropathol. Exp. Neurol. 55, 68 – 80.en_US
dc.identifier.citedreferenceRaynaud F. and Marcilhac A. ( 2006 ) Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer’s disease. FEBS J. 273, 3437 – 3443.en_US
dc.identifier.citedreferenceRazavi R., Chan Y., Afifiyan F. N. et al. ( 2006 ) TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127, 1123 – 1135.en_US
dc.identifier.citedreferenceRussell J. W., Sullivan K. A., Windebank A. J., Herrmann D. N. and Feldman E. L. ( 1999 ) Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol. Dis. 6, 347 – 363.en_US
dc.identifier.citedreferenceRussell J. W., Golovoy D., Vincent A. M., Mahendru P., Olzmann J. A., Mentzer A. and Feldman E. L. ( 2002 ) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 16, 1738 – 1748.en_US
dc.identifier.citedreferenceSayers N. M., Beswick L. J., Middlemas A., Calcutt N. A., Mizisin A. P., Tomlinson D. R. and Fernyhough P. ( 2003 ) Neurotrophin-3 prevents the proximal accumulation of neurofilament proteins in sensory neurons of streptozocin-induced diabetic rats. Diabetes 52, 2372 – 2380.en_US
dc.identifier.citedreferenceSchmeichel A. M., Schmelzer J. D. and Low P. A. ( 2003 ) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52, 165 – 171.en_US
dc.identifier.citedreferenceScott J. N., Clark A. W. and Zochodne D. W. ( 1999 ) Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain 122 ( Pt. 11 ), 2109 – 2118.en_US
dc.identifier.citedreferenceShibayama-Imazu T., Sonoda I., Sakairi S., Aiuchi T., Ann W. W., Nakajo S., Itabe H. and Nakaya K. ( 2006 ) Production of superoxide and dissipation of mitochondrial transmembrane potential by vitamin K(2) trigger apoptosis in human ovarian cancer TYK-nu cells. Apoptosis 11, 1535 – 1543.en_US
dc.identifier.citedreferenceShin C. Y., Shin J., Kim B. M., Wang M. H., Jang J. H., Surh Y. J. and Oh U. ( 2003 ) Essential role of mitochondrial permeability transition in vanilloid receptor 1-dependent cell death of sensory neurons. Mol. Cell. Neurosci. 24, 57 – 68.en_US
dc.identifier.citedreferenceSrinivasan S., Stevens M. and Wiley J. W. ( 2000 ) Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 49, 1932 – 1938.en_US
dc.identifier.citedreferenceStys P. K. and Jiang Q. ( 2002 ) Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons. Neurosci. Lett. 328, 150 – 154.en_US
dc.identifier.citedreferenceSzoke E., Czeh G., Szolcsanyi J. and Seress L. ( 2002 ) Neonatal anandamide treatment results in prolonged mitochondrial damage in the vanilloid receptor type 1-immunoreactive B-type neurons of the rat trigeminal ganglion. Neuroscience 115, 805 – 814.en_US
dc.identifier.citedreferenceVeldhuis W. B., van der S. M., Wadman M. W. et al. ( 2003 ) Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases. J. Neurosci. 23, 4127 – 4133.en_US
dc.identifier.citedreferenceVincent A. M., Olzmann J. A., Brownlee M., Sivitz W. I. and Russell J. W. ( 2004a ) Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 53, 726 – 734.en_US
dc.identifier.citedreferenceVincent A. M., Russell J. W., Low P. and Feldman E. L. ( 2004b ) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 25, 612 – 628.en_US
dc.identifier.citedreferenceWalker K. M., Urban L., Medhurst S. J., Patel S., Panesar M., Fox A. J. and McIntyre P. ( 2003 ) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 304, 56 – 62.en_US
dc.identifier.citedreferenceZochodne D. W., Verge V. M., Cheng C., Sun H. and Johnston J. ( 2001 ) Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes. Brain 124, 2319 – 2334.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.