Show simple item record

Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice

dc.contributor.authorTeuscher, Nathan S.en_US
dc.contributor.authorShen, Hongen_US
dc.contributor.authorShu, Cathaleenen_US
dc.contributor.authorXiang, Jianmingen_US
dc.contributor.authorKeep, Richard F.en_US
dc.contributor.authorSmith, David E.en_US
dc.date.accessioned2010-04-01T15:22:54Z
dc.date.available2010-04-01T15:22:54Z
dc.date.issued2004-04en_US
dc.identifier.citationTeuscher, Nathan S.; Shen, Hong; Shu, Cathaleen; Xiang, Jianming; Keep, Richard F.; Smith, David E. (2004). "Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice." Journal of Neurochemistry 89(2): 375-382. <http://hdl.handle.net/2027.42/65858>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65858
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15056281&dopt=citationen_US
dc.description.abstractPEPT2 is functionally active and localized to the apical membrane of rat choroid plexus epithelial cells. However, little is known about the transport mechanisms of endogenous neuropeptides in choroid plexus, and the role of PEPT2 in this process. In the present study, we examined the uptake kinetics of carnosine in rat choroid plexus primary cell cultures and choroid plexus whole tissue from wild-type (PEPT2 +/+ ) and null (PEPT2 –/– ) mice. Our results indicate that carnosine is preferentially taken up from the apical as opposed to basolateral membrane of cell monolayers, and that basolateral efflux in limited. Transepithelial flux of carnosine was not distinguishable from that of paracellular diffusion. The apical uptake of carnosine was characterized by a high affinity ( K m  = 34 μ m ), low capacity ( V max  = 73 pmol/mg protein/min) process, consistent with that of PEPT2. The non-saturable component was small ( K d  = 0.063 μL/mg protein/min) and, under linear conditions, was only 3% of the total uptake. Studies in transgenic mice clearly demonstrated that PEPT2 was responsible for over 90% of carnosine's uptake in choroid plexus whole tissue. These findings elucidate the unique role of PEPT2 in regulating neuropeptide homeostasis at the blood–cerebrospinal fluid interface.en_US
dc.format.extent172879 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 International Society for Neurochemistryen_US
dc.subject.otherCarnosineen_US
dc.subject.otherChoroid Plexusen_US
dc.subject.otherNeuropeptidesen_US
dc.subject.otherPEPT2en_US
dc.subject.otherTransporten_US
dc.titleCarnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Department of Neurosurgery and Physiology, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Department of Pharmaceutical Sciences, College of Pharmacy, and Upjohn Center for Clinical Pharmacologyen_US
dc.identifier.pmid15056281en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65858/1/j.1471-4159.2004.02333.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2004.02333.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBerger U. V. and Hediger M. A. ( 1999 ) Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat. Embryol. (Berl. ) 199, 439 – 449.en_US
dc.identifier.citedreferenceBoldyrev A. A., Stvolinsky S. L., Tyulina O. V., Koshelev V. B., Hori N. and Carpenter D. O. ( 1997 ) Biochemical and physiological evidence that carnosine is an endogenous neuroprotector against free radicals. Cell Mol. Neurobiol. 17, 259 – 271.en_US
dc.identifier.citedreferenceBradford M. M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceChung-Hwang E., Khurana H. and Fisher H. ( 1976 ) The effect of dietary histidine level on the carnosine concentration of rat olfactory bulbs. J. Neurochem. 26, 1087 – 1091.en_US
dc.identifier.citedreferenceDaniel H. and Herget M. ( 1997 ) Cellular and molecular mechanisms of renal peptide transport. Am. J. Physiol. 273, F1 – F8.en_US
dc.identifier.citedreferenceFerriero D. and Margolis F. L. ( 1975 ) Denervation in the primary olfactory pathway of mice. II. Effects on carnosine and other amine compounds. Brain Res. 94, 75 – 86.en_US
dc.identifier.citedreferenceHipkiss A. R. ( 1998 ) Carnosine, a protective, anti-ageing peptide? Int. J. Biochem. Cell Biol. 30, 863 – 868.en_US
dc.identifier.citedreferenceHipkiss A. R., Preston J. E., Himsworth D. T., Worthington V. C., Keown M., Michaelis J., Lawrence J., Mateen A., Allende L., Eagles P. A. et al. ( 1998 ) Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Ann. NY Acad. Sci. 854, 37 – 53.en_US
dc.identifier.citedreferenceHorning M. S., Blakemore L. J. and Trombley P. Q. ( 2000 ) Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res. 852, 56 – 61.en_US
dc.identifier.citedreferenceKish S. J., Perry T. L. and Hansen S. ( 1979 ) Regional distribution of homocarnosine, homocarnosine-carnosine synthetase and homocarnosinase in human brain. J. Neurochem. 32, 1629 – 1636.en_US
dc.identifier.citedreferenceLeibach F. H. and Ganapathy V. ( 1996 ) Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 16, 99 – 119.en_US
dc.identifier.citedreferenceLiu W., Liang R., Ramamoorthy S., Fei Y. J., Ganapathy M. E., Hediger M. A., Ganapathy V. and Leibach F. H. ( 1995 ) Molecular cloning of PEPT 2, a new member of the H + /peptide cotransporter family, from human kidney. Biochim. Biophys. Acta 1235, 461 – 466.en_US
dc.identifier.citedreferenceMarchis S. D., Modena C., Peretto P., Migheli A., Margolis F. L. and Fasolo A. ( 2000 ) Carnosine-related dipeptides in neurons and glia. Biochemistry (Mosc. ) 65, 824 – 833.en_US
dc.identifier.citedreferenceMargolis F. L. ( 1974 ) Carnosine in the primary olfactory pathway. Science 184, 909 – 911.en_US
dc.identifier.citedreferenceNovotny A., Xiang J., Stummer W., Teuscher N. S., Smith D. E. and Keep R. F. ( 2000 ) Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J. Neurochem. 75, 321 – 328.en_US
dc.identifier.citedreferenceO'Dowd J. J., Cairns M. T., Trainor M., Robins D. J. and Miller D. J. ( 1990 ) Analysis of carnosine, homocarnosine, and other histidyl derivatives in rat brain. J. Neurochem. 55, 446 – 452.en_US
dc.identifier.citedreferenceOcheltree S. M., Shen H., Hu Y., Xiang J., Keep R. F. and Smith D. E. ( 2004 ) Mechanisms of cefadroxil uptake in the choroid plexus: studies in wild type and PEPT2 knockout mice. J. Pharmacol. Exp. Ther. (in press).en_US
dc.identifier.citedreferencePreston J. E., Hipkiss A. R., Himsworth D. T., Romero I. A. and Abbott J. N. ( 1998 ) Toxic effects of β-amyloid (25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and β-alanine. Neurosci. Lett. 242, 105 – 108.en_US
dc.identifier.citedreferenceSakata K., Yamashita T., Maeda M., Moriyama Y., Shimada S. and Tohyama M. ( 2001 ) Cloning of a lymphatic peptide/histidine transporter. J. Biochem. 356, 53 – 60.en_US
dc.identifier.citedreferenceShen H., Smith D. E., Keep R. F., Xiang J. and Brosius F. C. III ( 2003 ) Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. J. Biol. Chem. 278, 4786 – 4791.en_US
dc.identifier.citedreferenceShu C., Shen H., Teuscher N. S., Lorenzi P. J., Keep R. F. and Smith D. E. ( 2002 ) Role of PEPT2 in peptide/mimetic trafficking at the blood–cerebrospinal fluid barrier: studies in rat choroid plexus epithelial cells in primary culture. J. Pharmacol. Exp. Ther. 301, 820 – 829.en_US
dc.identifier.citedreferenceSmith D. E., Johanson C. E. and Keep R. F. ( 2004 ) Peptide and peptide analog transport systems at the blood–CSF barrier. Adv. Drug Deliv. Rev. in press.en_US
dc.identifier.citedreferenceStrazielle N. and Ghersi-Egea J. F. ( 1999 ) Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of protection toward xenobiotics. J. Neurosci. 19, 6275 – 6289.en_US
dc.identifier.citedreferenceStvolinsky S. L., Kukley M. L., Dobrota D., Matejovicova M., Tkac I. and Boldyrev A. A. ( 1999 ) Carnosine: an endogenous neuroprotector in the ischemic brain. Cell Mol. Neurobiol. 19, 45 – 56.en_US
dc.identifier.citedreferenceTeuscher N. S., Novotny A., Keep R. F. and Smith D. E. ( 2000 ) Functional evidence for presence of PEPT2 in rat choroid plexus: studies with glycylsarcosine. J. Pharmacol. Exp. Ther. 294, 494 – 499.en_US
dc.identifier.citedreferenceTeuscher N. S., Keep R. F. and Smith D. E. ( 2001 ) PEPT2-mediated uptake of neuropeptides in rat choroid plexus. Pharm. Res. 18, 807 – 813.en_US
dc.identifier.citedreferenceWang H., Fei Y. -J., Ganapathy V. and Leibach F. H. ( 1998 ) Electrophysiological characteristics of the proton-coupled peptide transporter PEPT2 cloned from rat brain. Am. J. Physiol. 275, C967 – C975.en_US
dc.identifier.citedreferenceWard R. J. and Preedy V. R. ( 1992 ) Imidazole dipeptides in experimental alcohol-induced myopathy. Alcohol 27, 633 – 639.en_US
dc.identifier.citedreferenceYamashita T., Shimada S., Guo W., Sato K., Kohmura E., Hayakawa T., Takagi T. and Tohyama M. ( 1997 ) Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 272, 10205 – 10211.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.