Show simple item record

Electron Irradiation Induced Transformation of (Pb 5 Ca 5 )(VO 4 ) 6 F 2 Apatite to CaVO 3 Perovskite

dc.contributor.authorDong, Z. L.en_US
dc.contributor.authorWhite, T. J.en_US
dc.contributor.authorSun, K.en_US
dc.contributor.authorWang, L. M.en_US
dc.contributor.authorEwing, Rodney C.en_US
dc.date.accessioned2010-04-01T15:25:39Z
dc.date.available2010-04-01T15:25:39Z
dc.date.issued2005-01en_US
dc.identifier.citationDong, Z . L.; White, T . J.; Sun, K.; Wang, L . M.; Ewing, R . C. (2005). "Electron Irradiation Induced Transformation of (Pb 5 Ca 5 )(VO 4 ) 6 F 2 Apatite to CaVO 3 Perovskite." Journal of the American Ceramic Society 88(1): 184-190. <http://hdl.handle.net/2027.42/65906>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65906
dc.format.extent844077 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rightsCopyright © 2004 by The American Ceramic Societyen_US
dc.titleElectron Irradiation Induced Transformation of (Pb 5 Ca 5 )(VO 4 ) 6 F 2 Apatite to CaVO 3 Perovskiteen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104en_US
dc.contributor.affiliationotherCentre for Advanced Research of Ecomaterials, Institute of Environmental Science and Engineering, Singapore 637723, Singaporeen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65906/1/j.1551-2916.2004.00002.x.pdf
dc.identifier.doi10.1111/j.1551-2916.2004.00002.xen_US
dc.identifier.sourceJournal of the American Ceramic Societyen_US
dc.identifier.citedreferenceQ. Y. Ma, S. J. Traina, T. J. Logan, and J. A. Ryan, “ In situ Lead Immobilization by Apatite,” Environ. Sci. Technol., 27, 1803 – 10 ( 1993 ).en_US
dc.identifier.citedreferenceT. A. Ioannidis and A. I. Zouboulis, “ Detoxification of a High Toxic Lead-Loaded Industrial Solid Waste by Stabilization Using Apatites,” J. Hazard. Mater., B97, 173 – 91 ( 2003 ).en_US
dc.identifier.citedreferenceT. J. White and Z. L. Dong, “ Structural Derivation and Crystal Chemistry of Apatites,” Acta Crystallogr., B59, 1 – 16 ( 2003 ).en_US
dc.identifier.citedreferenceY. Xu and F. W. Schwartz, “ Lead Immobilization by Hydroxyapatite in Aqueous Solutions,” J. Contam. Hydrol., 15, 187 – 206 ( 1994 ).en_US
dc.identifier.citedreferenceE. Mavropoulos, A. M. Rossi, and A. M. Costa, “ Studies on the Mechanisms of Lead Immobilization by Hydroxyapatite,” Environ. Sci. Technol., 36, 1625 – 9 ( 2002 ).en_US
dc.identifier.citedreferenceN. Arnich, M. C. Lanhers, F. Laurensot, R. Podor, A. Montiel, and D. Burnel, “ In Vitro and In Vivo Studies of Lead Immobilization by Synthetic Hydroxyapatite,” Environ. Pollut., 124, 139 – 149 ( 2003 ).en_US
dc.identifier.citedreferenceY. Xu, F. W. Schwartz, and S. J. Traina, “ Sorption of Zn 2+ and Cd 2+ on Hydroxyapatite Surfaces,” Environ. Sci. Technol., 28, 1472 – 80 ( 1994 ).en_US
dc.identifier.citedreferenceJ. Jeanjean, S. McGrellis, J. C. Rouchaud, M. Fedoroff, A. Rondeau, S. Perocheau, and A. Dubis, “ A Crystallographic Study of the Sorption of Cadmium on Calcium Hydroxyapatite : Incidence of Cationic Vacancies,” J. Solid State Chem., 126, 195 – 201 ( 1996 ).en_US
dc.identifier.citedreferenceS. Mandjiny, K. A. Matis, A. I. Zouboulis, M. Fedoroff, J. Jeanjean, J. C. Rouchaud, N. Toulhoat, V. Petocek, C. Loos-Neskovic, P. Maireles-Torres, and D. Jones, “ Calcium Hydroxyapatite : Evaluation of Sorption Properties for Cadmium Ions in Aqueous Solutions,” J. Mater. Sci., 33, 5433 – 9 ( 1998 ).en_US
dc.identifier.citedreferenceC. C. Fuller, J. R. Bargar, J. A. Davis, and M. J. Piana, “ Mechanisms of Uranium Interactions with Hydroxyapatite : Implications for Groundwater Remediation,” Environ. Sci. Technol., 36 [2], 158 – 165 ( 2002 ).en_US
dc.identifier.citedreferenceB. Senger, E. F. Bres, J. L. Hutchinson, J. -C. Voegel, and R. M. Frank, “ Ballistic Damages Induced by Electrons in Hydroxyapatite (OHAP),” Philos. Mag. A., 65 [3] 665 – 82 ( 1992 ).en_US
dc.identifier.citedreferenceS. Nicolopoulos, J. M. Gonzalez-calbet, M. P. Alonso, M. T. Gutierrez-rios, M. I. de Frutos, and M. Vallet-Regi, “ Characterization by TEM of Local Crystalline Changes During Irradiation Damage of Hydroxyapatite Compounds,” J. Solid State Chem., 116, 265 – 74 ( 1995 ).en_US
dc.identifier.citedreferenceK. Sato, T. Kogure, H. Iwai, and J. Tanaka, “ Atomic Scale {10-10} Interfacial Structure in Hydroxyapatite Determined by High-Resolution Transmission El,” J. Am. Ceram. Soc., 85 [12] 3054 – 8 ( 2002 ).en_US
dc.identifier.citedreferenceE. F. BrÈs, J. L. Hutchinson, B. Senger, J. -C. Voegel, and R. M. Frank, “ HREM Study of Irradiation Damage in Human Dental,” Ultramicroscopy, 35, 305 – 32 ( 1991 ).en_US
dc.identifier.citedreferenceF. J. G. Cuisinier, R. W. Glaisher, J. -C. Voegel, J. L. Hutchinson, E. F. Bres, and R. M. Frank, “ Compositional Variation in Apatites with respect to Preferential Ionic Extraction,” Ultramicroscopy, 36, 297 – 305 ( 1991 ).en_US
dc.identifier.citedreferenceZ. L. Dong, T. J. White, B. Wei, and K. Laursen, “ Model Apatite Systems for the Stabilization of Toxic Metals : I Calcium Lead Vanadate,” J. Am. Ceram. Soc., 85 [10] 2515 – 22 ( 2002 ).en_US
dc.identifier.citedreferenceZ. L. Dong and T. J. White, “ Calcium Lead Fluoro-Vanadinites : I Disequilibrium Structure,” Acta Crystallogr., B60, 138 – 145 ( 2004 ).en_US
dc.identifier.citedreferenceP. A. Stadelmann, “ EMS – A Software Package for Electron Diffraction Analysis and HREM Image Simulation in Materials Science,” Ultramicroscopy, 21 [2] 131 – 45 ( 1987 ).en_US
dc.identifier.citedreferenceX. Zou, M. Sundberg, M. Larine, and S. Hovmoller, “ Structure Projection Retrieval by Image Processing of HRTEM Images Taken under Non-Optimum Defocus Conditions,” Ultramicroscopy, 62, 103 – 21 ( 1996 ).en_US
dc.identifier.citedreferenceD. N. Wang, S. Hovmoller, L. Kihlborg, and M. Sundberg, “ Structure Determination and Correction for Distortion in HREM by Crystallographic Image Processing,” Ultramicroscopy, 25, 303 – 16 ( 1998 ).en_US
dc.identifier.citedreferenceX. D. Zou, “ Crystal Structure Determination by Crystallographic Image Processing : I.HREM Images, Structure Factors and Projected Potential ”; pp. 163 – 72 in Materials Research Society Symposium Proceedings, Electron Crystallography, Edited by L. D. Douglas, S. Hovmoller, and X. Zou. Kluwer Academic Publishers, Dordrecht, 1998.en_US
dc.identifier.citedreferenceX. D. Zou, “ Crystal Structure Determination by Crystallographic Image Processing : II. Compensate for Defocus, Astigmatism and Crystal Tilt ”; pp. 173 – 81 in Materials Research Society Symposium Proceedings, Electron Crystallography, Edited by L. D. Douglas, S. Hovmoller, and X. Zou. Kluwer Academic Publishers, Dordrecht, 1998.en_US
dc.identifier.citedreferenceJ. Garcia-Jaca, J. I. R. Larramendi, M. Insausti, M. I. Arriortua, and T. Rojo, “ Synthesis, Crystal Structure and Transport Properties of a New Non-Stoichiometric CaVO 3 d phase,” J. Mater. Chem., 5, 1995 – 9 ( 1995 ).en_US
dc.identifier.citedreferenceP. A. Henning, A. R. Landa-Canovas, A. -K. Larsson, and S. Lidin, “ Elucidation of the Crystal Structure of Oxyapatite by High-Resolution Electron Microscopy,” Acta Crystallogr. B, 55, 170 – 6 ( 1999 ).en_US
dc.identifier.citedreferenceR. Gopal and C. Calvo, “ The Structure of Ca 3 (VO 4 ) 2,” Z. Kristallogr. Kristallg. Kristallphy. Kristallchem., 137, 67 – 85 ( 1973 ).en_US
dc.identifier.citedreferenceA. Grzechnik, “ Crystal structure of Ca 3 (VO 4 ) 2 synthesized at 11 GPa and 1373 K,” Solid State Sci, 4, 523 – 7 ( 2002 ).en_US
dc.identifier.citedreferenceJ. -M. Kiat, P. Garnier, and M. Pinot, “ Neutron and X-ray Rietveld Analysis of the Three Phases of Lead Orthovanadate Pb 3 V 2 O 8 : Importance of the Electronic Lone Pairs in the Martensitic Transitions,” J. Solid State Chem., 91, 339 – 49 ( 1991 ).en_US
dc.identifier.citedreferenceR. M. Wilson, J. C. Elliott, and S. E. P. Dowker, “ Rietveld Refinement of the Crystallographic Structure of Human Dental Enamel Apatites,” Am. Mineral., 84, 1406 – 14 ( 1999 ).en_US
dc.identifier.citedreferenceA. Nounah, J. L. Lacout, and J. -M. Savariault, “ Localization of Cadmium in Cadmium-Containing Hydroxy- and Fluorapatites,” J. Alloys Compds., 188, 141 – 6 ( 1992 ).en_US
dc.identifier.citedreferenceK. Sudarsanan and R. A. Young, “ Structural Interactions of F, Cl and OH in Apatites,” Acta Crystallogr. B., 34, 1401 – 7 ( 1978 ).en_US
dc.identifier.citedreferenceM. Cameron, L. M. Wang, K. D. Crowley, and R. C. Ewing, “HRTEM Observation on Electron Irradiation Damage in F-Apatite,” pp. 378–9 in Proceedings of the 50th Annual Meeting on the Electron Microscopy Society of America, Edited by G. W. Bailey and S. A. Small, San Francisco Press, San Francisco, CA, 1992.en_US
dc.identifier.citedreferenceL. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer, W. J. Weber, and Hj. Matzke, “ Irradiation-Induced Nanostructures,” Mater. Sci. Eng. A, 286, 72 – 80 ( 2000 ).en_US
dc.identifier.citedreferenceW. Carrillo-Cabrera and H. G. von Schnering, “ Pentastrontium Tris(tetraoxovanadate(V)) catena-monoxocuprate(I), Sr 5 (O 4 ) 3 (CuO)—An Apatite Derivative with Inserted Linear (CuO) 1− Chains,” Z. Anorgan. Allgem. Chem., 625, 183 – 5 ( 1999 ).en_US
dc.identifier.citedreferenceJ. Garcia-Jaca, J. L. Mesa, M. Insausti, J. I. R. Larramendi, M. I. Arriortua, and T. Rojo, “ Synthesis, Crystal Structure, Stoichiometry and Magnetic Properties of (Ca 1− x Sr x )VO 3,” Mater. Res. Bull., 34, 289 – 301 ( 1999 ).en_US
dc.identifier.citedreferenceD. Reinen, H. Lachwa, and R. Allmann, “ EPR und Ligandenfeldspektroskopische Untersuchungen an Mn(V)-haltigen Apatiten sowie die Struktur von Ba 5 (Mn O 4 ) 3 Cl,” Z. Anorg. Allgem. Chem., 542, 71 – 88 ( 1986 ).en_US
dc.identifier.citedreferenceA. N. Christensen and G. Ollivier, “ Hydrothermal and High-Pressure Preparation of Some BaMnO 3 Modifications and Low-Temperature Magnetic Properties of BaMnO 3 (2H),” J. Solid State Chem., 4, 131 – 7 ( 1972 ).en_US
dc.identifier.citedreferenceC. B. Boechat, J. Terra, J. -G. Eon, D. E. Ellis, and A. M. Rossi, “ Reduction by Hydrogen of Vanadium in Vanadate Apatite Solid Solutions,” Phys. Chem. Chem. Phys., 5, 4290 – 8 ( 2003 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.