Show simple item record

Formation of Oxide Scales on Zirconium Diboride–Silicon Carbide Composites During Oxidation: Relation of Subscale Recession to Liquid Oxide Flow

dc.contributor.authorKarlsdottir, Sigrun N.en_US
dc.contributor.authorHalloran, John W.en_US
dc.date.accessioned2010-04-01T15:31:20Z
dc.date.available2010-04-01T15:31:20Z
dc.date.issued2008-11en_US
dc.identifier.citationKarlsdottir, Sigrun N.; Halloran, John W. (2008). "Formation of Oxide Scales on Zirconium Diboride–Silicon Carbide Composites During Oxidation: Relation of Subscale Recession to Liquid Oxide Flow." Journal of the American Ceramic Society 91(11): 3652-3658. <http://hdl.handle.net/2027.42/66005>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66005
dc.format.extent1709235 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2008 American Ceramic Societyen_US
dc.titleFormation of Oxide Scales on Zirconium Diboride–Silicon Carbide Composites During Oxidation: Relation of Subscale Recession to Liquid Oxide Flowen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66005/1/j.1551-2916.2008.02639.x.pdf
dc.identifier.doi10.1111/j.1551-2916.2008.02639.xen_US
dc.identifier.sourceJournal of the American Ceramic Societyen_US
dc.identifier.citedreferenceF. Monteverde and A. Bellosi, “ The Resistance to Oxidation of HfB 2 –SiC Composite,” J. Eur. Ceram. Soc., 25, 1025 – 31 ( 2005 ).en_US
dc.identifier.citedreferenceF. Monteverde and A. Bellosi, “ Oxidation of ZrB 2 -Based Ceramics in Dry Air,” J. Electrochem. Soc., 150 [11] B552 – 9 ( 2003 ).en_US
dc.identifier.citedreferenceA. Chamberlain, W. Fahrenholtz, G. Hilmas, and D. Ellerby, “ Oxidation of ZrB 2 –SiC Ceramics Under Atmospheric and Reentry Conditions,” Refract. Appl. Trans., 1 [2] 1 – 8 ( 2005 ).en_US
dc.identifier.citedreferenceS. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, and J. A. Salem, “ Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use,” J. Eur. Ceram. Soc., 22, 2757 – 67 ( 2002 ).en_US
dc.identifier.citedreferenceW. G. Fahrenholtz, “ Thermodynamic Analysis of ZrB 2 –SiC Oxidation : Formation of a SiC-Depleted Region,” J. Am. Ceram. Soc., 90 [1] 143 – 8 ( 2007 ).en_US
dc.identifier.citedreferenceM. M. Opeka, I. G. Talmy, and J. A. Zaykoski, “ Oxidation-Based Materials Selection for 2000°C+Hypersonic Aerosurface : Theoretical Considerations and Historical Experience,” J. Mater. Sci., 39 [19] 5887 – 904 ( 2004 ).en_US
dc.identifier.citedreferenceA. Bongiorno, C. J. FÖrst, R. K. Kalia, J. Li, J. Marschall, A. Nakano, M. M. Opeka, I. G. Talmy, P. Vashishta, and S. Yip, “ A Perspective on Modeling Material in Extreme Environments : Oxidation of Ultra-High Temperature Ceramics,” Mater. Res. Soc. Bull., 31, 410 – 8 ( 2006 ).en_US
dc.identifier.citedreferenceP. C. Setze, A Review of the Physical and Thermodynamic Properties of Boric Oxide. NACA-RM-E57B14. Lewis Flight Propulsion Laboratory, Cleveland, OH, 1957.en_US
dc.identifier.citedreferenceS. N. Karlsdottir, J. W. Halloran, and C. E. Henderson, “ Convection Patterns in Liquid Oxide Films on Zirconium Diboride–Silicon Carbide Composites Oxidized at High Temperature,” J. Am. Ceram. Soc., 90 [9] 2863 – 7 ( 2007 ).en_US
dc.identifier.citedreferenceS. N. Karlsdottir, J. W. Halloran, and A. N. Grundy, “ Zirconia Transport by Liquid Convection During Oxidation of Zirconium Diboride–Silicon Carbide Composite,” J. Am. Ceram. Soc., 91 [1] 272 – 7 ( 2008 ).en_US
dc.identifier.citedreferenceS. N. Karlsdottir, J. W. Halloran, F. Monteverde, and A. Bellosi, “ Oxidation of ZrB2-SiC: Comparison of Furnace Heated Coupons and Self-Heated Ribbon Specimens ”; in Proceedings of the 31st International Conference on Ceramics and Composites, Daytona Beach FL, January 21–26, 2007. Mechanical Properties and Performance of Engineering Ceramics and Composites III, Edited by E. Lara-Curzio. Ceram. Trans., 28 [2] 327–336 (2007).en_US
dc.identifier.citedreferenceF. Monteverde, “ The Thermal Stability in Air of Hot Pressed Diboride Matrix Composites for Uses at Ultra-High Temperatures,” Corros. Sci., 47, 2020 – 33 ( 2005 ).en_US
dc.identifier.citedreferenceA. Rezaie, W. G. Fahrenholtz, and G. E. Hilmas, “ Evolution of Structure During the Oxidation of Zirconium Diboride–Silicon Carbide in Air up to 1500°C,” J. Eur. Ceram. Soc., 27 [6] 2495 – 501 ( 2007 ).en_US
dc.identifier.citedreferenceF. Monteverde, “ Beneficial Effects of an Ultra-Fine Α-SiC Incorporation on the Sinterability and Mechanical Properties of ZrB 2,” Appl. Phys. A, 82, 329 – 37 ( 2006 ).en_US
dc.identifier.citedreferenceA. Einstein, Investigations on the Theory of the Brownian Movement, reprinted by Dover Publications, New York, 1926.en_US
dc.identifier.citedreferenceY. Liang, F. M. Richter, A. M. Davis, and E. B. Watson, “ Diffusion in Silicate Melts : I. Self Diffusion in CaO–Al 2 O 3 –SiO 2 at 1500°C and 1 GPa,” Geochim. Cosmochim. Acta, 60 [22] 4353 – 67 ( 1996 ).en_US
dc.identifier.citedreferenceE. M. Tanguep Njiokep and H. Mehrer, “ Diffusion of 22 Na and 45 Ca in Ionic Conduction in Two Standard Soda-Lime Glasses,” Solid State Ionics, 177, 2839 – 44 ( 2006 ).en_US
dc.identifier.citedreferenceH. Eyring, “ Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates,” J. Chem. Phys., 4 [4] 283 – 91 ( 1936 ).en_US
dc.identifier.citedreferenceM. L. Ferreira Nascimento and E. D. Zanotto, “ Mechanisms and Dynamics of Crystal Growth, Viscous Flow, and Self-Diffusion in Silica Glass,” Phys. Rev. B, 73, 024209 ( 2006 ).en_US
dc.identifier.citedreferenceR. Jabra, J. Phalippau, and J. Zarzicki, “ Synthesis of Binary Glass-Forming Oxide Glasses by Hot-Pressing,” J. Non-Cryst. Solids, 42, 489 – 98 ( 1980 ).en_US
dc.identifier.citedreferenceC. E. Ramberg and W. L. Worrell, “ Oxygen Transport in Silica at High Temperatures : Implications of Oxidation Kinetics,” J. Am. Ceram. Soc., 84 [11] 2607 – 16 ( 2001 ).en_US
dc.identifier.citedreferenceJ. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, and D. Foster, “ Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery,” J. Electrochem. Soc., 150 [10] A1351 – 6 ( 2003 ).en_US
dc.identifier.citedreferenceR. H. Doremus, “ Transport of Oxygen in Silicate Glasses,” J. Non-Cryst. Solids, 349, 242 – 7 ( 2004 ).en_US
dc.identifier.citedreferenceY. Zhang, E. M. Stolper, and G. J. Wasserburg, “ Diffusion of a Multi-Species Component and its Role in Oxygen and Water Transport in Silicates,” Earth Planet Sci. Lett., 103, 228 – 40 ( 1991 ).en_US
dc.identifier.citedreferenceE. L. Williams, “ Diffusion of Oxygen in Fused Silica,” J. Am. Ceram. Soc., 48 [4] 190 – 4 ( 1965 ).en_US
dc.identifier.citedreferenceD. Tinker, C. E. Lesher, and I. D. Hutcheon, “ Self-Diffusion of Si and O in Diopside Anorthite Melt at High Pressure,” Geochim. Cosmochim. Acta, 67 [1] 133 – 42 ( 2003 ).en_US
dc.identifier.citedreferenceF. J. Norton, “ Permeation of Gaseous Oxygen Through Vitreous Silica,” Nature, 191, 701 ( 1961 ).en_US
dc.identifier.citedreferenceA. C. Fox and T. W. Clyne, “ Oxygen Transport by Gas Permeation Through the Zirconia layer in Plasma Sprayed Thermal Barrier Coatings,” Surf. Coat. Technol., 184, 311 – 21 ( 2004 ).en_US
dc.identifier.citedreferenceJ. D. Cawley, J. W. Halloran, and A. R. Cooper, “ Oxygen-18 Tracer Study of the Passive Thermal Oxidation of Silicon,” Oxid. Met., 28 [1–2] 1 – 15 ( 1987 ).en_US
dc.identifier.citedreferenceR. Telle, L. S. Sigl, and K. Takagi, “ Transition Metal Boride Ceramics ”; pp. 140 – 54 in Handbook of Ceramic Hard Materials, Vol. 1, Edited by R. Reidel. Wiley-VCH, Weinheim, Germany, 2000.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.