Show simple item record

Presence of functionally active protease-activated receptors 1 and 2 in myenteric glia

dc.contributor.authorGarrido, Rosarioen_US
dc.contributor.authorSegura, Bradley J.en_US
dc.contributor.authorZhang, Weizhenen_US
dc.contributor.authorMulholland, Michael W.en_US
dc.date.accessioned2010-04-01T15:33:10Z
dc.date.available2010-04-01T15:33:10Z
dc.date.issued2002-11en_US
dc.identifier.citationGarrido, Rosario; Segura, Bradley; Zhang, Weizhen; Mulholland, Michael (2002). "Presence of functionally active protease-activated receptors 1 and 2 in myenteric glia." Journal of Neurochemistry 83(3): 556-564. <http://hdl.handle.net/2027.42/66037>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66037
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12390517&dopt=citationen_US
dc.description.abstractProtease-activated receptors (PARs) belong to the family of membrane receptors coupled to G-proteins; their presence is reported in a wide variety of cells. The object of this study was to demonstrate the presence of PAR-1 and PAR-2 in myenteric glia of the guinea pig, and to elucidate the cellular mechanisms that are triggered upon receptor activation. Thrombin and PAR-1 agonist peptide (PARP-1) activate PAR-1 with a maximum mean ± SEM change in intracellular calcium concentration with respect to basal level (δ[Ca 2+ ] i ) of 183 ± 18 nm and 169 ± 6 nm, respectively. Trypsin and PAR-2 agonist peptide (PARP-2) activate PAR-2 with a maximum δ[Ca 2+ ] i of 364 ± 28 nm and 239 ± 19 nm, respectively. Inhibition of phospholipase C by U73312 (1 µm) decreased the δ[Ca 2+ ] i due to PAR-1 activation from 167 ± 10 nm to 87 ± 6 nm. The PAR-2-mediated δ[Ca 2+ ] i decreased from 193 ± 10 nm to 124 ± 8 nm when phospholipase C activity was inhibited. Blockade of sphingosine kinase with dimethylsphingosine (1 µm) decreased the δ[Ca 2+ ] i due to PAR-2 activation from 149 ± 19 nm to 67 ± 1 nm, but did not influence the PAR-1-mediated δ[Ca 2+ ] i . PAR-1 and PAR-2 were localized in myenteric glia by immunolabeling. Our results indicate that PAR-1 and PAR-2 are present in myenteric glia of the guinea pig, and their activation leads to increases in intracellular calcium via different signal transduction mechanisms that involve activation of phospholipase C and sphingosine kinase.en_US
dc.format.extent387724 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2002 International Society for Neurochemistryen_US
dc.subject.otherCalciumen_US
dc.subject.otherEnteric Gliaen_US
dc.subject.otherProtease-activated Receptorsen_US
dc.subject.otherSignal Transductionen_US
dc.titlePresence of functionally active protease-activated receptors 1 and 2 in myenteric gliaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Physiology, University of Michigan Medical Center, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Surgery anden_US
dc.identifier.pmid12390517en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66037/1/j.1471-4159.2002.01119.x.pdf
dc.identifier.doi10.1046/j.1471-4159.2002.01119.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAndersen H., Greenberg D. L., Fujikawa K., Xu W., Chung D. W. and Davie E. W. ( 1999 ) Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity. Proc. Nat. Acad. Sci. USA 96, 11189 – 11193.en_US
dc.identifier.citedreferenceAl-Ani B., Saifeddine M. and Hollenberg M. D. ( 1995 ) Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-NH2, in rat vascular and gastric smooth muscle. Can. J. Physiol. Pharmacol. 73, 1203 – 1207.en_US
dc.identifier.citedreferenceBabich M., King K. L. and Nissenson R. A. ( 1990 ) Thrombin stimulates inositol phosphate production and intracellular free calcium by a pertussis toxin-insensitive mechanism in osteosarcoma cells. Endocrinology 126, 948 – 954.en_US
dc.identifier.citedreferenceBerger P., Tunon-De-Lara J. M., Savineau J. P. and Marthan R. ( 2001 ) Selected contribution: tryptase-induced PAR-2-mediated Ca(2+) signaling in human airway smooth muscle cells. J. Appl. Physiol. 91, 995 – 1003.en_US
dc.identifier.citedreferenceBerridge M. J. ( 1995 ) Capacitative calcium entry. Biochem. J. 312, 1 – 11.en_US
dc.identifier.citedreferenceBizios R., Lai L., Fenton J. W. II and Malik A. B. ( 1986 ) Thrombin-induced chemotaxis and aggregation of neutrophils. J. Cell. Physiol. 128, 485 – 490.en_US
dc.identifier.citedreferenceBohm S. K., Khitin L. M., Grady E. F., Aponte G., Payan D. G. and Bunnett N. W. ( 1996 ) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J. Biol. Chem. 271, 22003 – 22016.en_US
dc.identifier.citedreferenceBrass L. F., Hoxie J. A. and Manning D. R. ( 1993 ) Signaling through G proteins and G protein-coupled receptors during platelet activation. Thromb. Haemost. 70, 217 – 223.en_US
dc.identifier.citedreferenceChao B. H., Kalkunte S., Maraganore J. M. and Stone S. R. ( 1992 ) Essential groups in synthetic agonist peptides for activation of the platelet thrombin receptor. Biochemistry 31, 6175 – 6178.en_US
dc.identifier.citedreferenceChoi O. H., Kim J. H. and Kinet J. P. ( 1996 ) Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 380, 634 – 636.en_US
dc.identifier.citedreferenceCorvera C. U., Dery O., McConalogue K., Gamp P., Thoma M., Al-Ani B., Caughey G. H., Hollenberg M. D. and Bunnett N. W. ( 1999 ) Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J. Physiol. 517, 741 – 756.en_US
dc.identifier.citedreferenceD'Andrea M. R., Derian C. K., Leturcq D., Baker S. M., Brunmark A., Ling P., Darrow A. L., Santulli R. J., Brass L. F. and Andrade-Gordon P. ( 1998 ) Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J. Histochem. Cytochem. 46, 157 – 164.en_US
dc.identifier.citedreferenceDerian C. K. and Eckardt A. J. ( 1997 ) Thrombin receptor-dependent prostaglandin E2 synthesis in hamster fibroblasts: synergistic interactions with interleukin-1beta. Exp. Cell Res. 232, 1 – 7.en_US
dc.identifier.citedreferenceEdsall L. C., Van Brocklyn J. R., Cuvillier O., Kleuser B. and Spiegel S. ( 1998 ) N, N -Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry 37, 12892 – 12898.en_US
dc.identifier.citedreferenceGabella G. ( 1982 ) On the ultrastructure of the enteric nerve ganglia. Scand. J. Gastroenterol. Suppl. 71, 15 – 25.en_US
dc.identifier.citedreferenceGarcia J. G. ( 1992 ) Molecular mechanisms of thrombin-induced human and bovine endothelial cell activation. J. Lab. Clin. Med. 120, 513 – 519.en_US
dc.identifier.citedreferenceGershon M. D. and Sherman D. L. ( 1987 ) Noradrenergic innervation of serotoninergic neurons in the myenteric plexus. J. Comp. Neurol. 259, 93 – 210.en_US
dc.identifier.citedreferenceGhosh T. K., Bian J. and Gill D. L. ( 1994 ) Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J. Biol. Chem. 269, 22628 – 22635.en_US
dc.identifier.citedreferenceGordon J. R., Zhang X., Stevenson K. and Cosford K. ( 2000 ) Thrombin induces IL-6 but not TNF-alpha secretion by mouse mast cells: threshold-level thrombin receptor and very low level FcepsilonRI signaling synergistically enhance IL-6 secretion. Cell. Immunol. 205, 128 – 135.en_US
dc.identifier.citedreferenceGrand R. J., Turnell A. S. and Grabham P. W. ( 1996 ) Cellular consequences of thrombin-receptor activation. Biochem. J. 313, 353 – 368.en_US
dc.identifier.citedreferenceGreen B. T., Bunnett N. W., Kulkarni-Narla A., Steinhoff M. and Brown D. R. ( 2000 ) Intestinal type 2 proteinase-activated receptors: expression in opioid-sensitive secretomotor neural circuits that mediate epithelial ion transport. J. Pharmacol. Exp. Ther. 295, 410 – 416.en_US
dc.identifier.citedreferenceHammes S. R. and Coughlin S. R. ( 1999 ) Protease-activated receptor-1 can mediate responses to SFLLRN in thrombin-desensitized cells: evidence for a novel mechanism for preventing or terminating signaling by PAR1's tethered ligand. Biochemistry 38, 2486 – 2493.en_US
dc.identifier.citedreferenceHollenberg M. D., Saifeddine M., al-Ani B. and Kawabata A. ( 1997 ) Proteinase-activated receptors: structural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Can. J. Physiol. Pharmacol. 75, 832 – 841.en_US
dc.identifier.citedreferenceHung D. T., Wong Y. H., Vu T. K. and Coughlin S. R. ( 1992 ) The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J. Biol. Chem. 267, 20831 – 20834.en_US
dc.identifier.citedreferenceIshihara H., Connolly A. J., Zeng D., Kahn M. L., Zheng Y. W., Timmons C., Tram T. and Coughlin S. R. ( 1997 ) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502 – 506.en_US
dc.identifier.citedreferenceJessen K. R. and Mirsky R. ( 1983 ) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J. Neurosci. 3, 2206 – 2218.en_US
dc.identifier.citedreferenceKimball B. C. and Mulholland M. W. ( 1996 ) Enteric glia exhibit P2U receptors that increase cytosolic calcium by a phospholipase C-dependent mechanism. J. Neurochem. 66, 604 – 612.en_US
dc.identifier.citedreferenceKong W., McConalogue K., Khitin L. M., Hollenberg M. D., Payan D. G., Bohm S. K. and Bunnett N. W. ( 1997 ) Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl Acad. Sci. USA 94, 8884 – 8889.en_US
dc.identifier.citedreferenceMalik A. B., Lo S. K. and Bizios R. ( 1986 ) Thrombin-induced alterations in endothelial permeability. Ann. N. Y. Acad. Sci. 485, 293 – 309.en_US
dc.identifier.citedreferenceNystedt S., Larsson A. K., Aberg H. and Sundelin J. ( 1995 ) The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J. Biol. Chem 270, 5950 – 5955.en_US
dc.identifier.citedreferencePostma F. R., Jalink K., Hengeveld T. and Moolenaar W. H. ( 1996 ) Sphingosine-1-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO J. 15, 2388 – 2392.en_US
dc.identifier.citedreferenceSantulli R. J., Derian C. K., Darrow A. L., Tomko K. A., Eckardt A. J., Seiberg M., Scarborough R. M. and Andrade-Gordon P. ( 1995 ) Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc. Natl Acad. Sci. USA 92, 9151 – 9155.en_US
dc.identifier.citedreferenceSarosi G. A., Barnhart D. C., Turner D. J. and Mulholland M. W. ( 1998 ) Capacitative Ca 2+ entry in enteric glia induced by thapsigargin and extracellular ATP. Am. J. Physiol. 275, G550 – G555.en_US
dc.identifier.citedreferenceSobey C. G., Moffatt J. D. and Cocks T. M. ( 1999 ) Evidence for selective effects of chronic hypertension on cerebral artery vasodilatation to protease-activated receptor-2 activation. Stroke 30, 1933 – 1940.en_US
dc.identifier.citedreferenceUbl J. J., Vohringer C. and Reiser G. ( 1998 ) Co-existence of two types of [Ca 2+ ] i -inducing protease-activated receptors (PAR-1 and PAR-2) in rat astrocytes and C6 glioma cells. Neuroscience 86, 597 – 609.en_US
dc.identifier.citedreferenceVergnolle N., Macnaughton W. K., Al-Ani B., Saifeddine M., Wallace J. L. and Hollenberg M. D. ( 1998 ) Proteinase-activated receptor 2 (PAR2)-activating peptides: identification of a receptor distinct from PAR2 that regulates intestinal transport. Proc. Natl Acad. Sci. USA 95, 7766 – 7771.en_US
dc.identifier.citedreferenceVergnolle N., Wallace J. L., Bunnett N. W. and Hollenberg M. D. ( 2001 ) Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol. Sci. 22, 146 – 152.en_US
dc.identifier.citedreferenceWakita H., Furukawa F. and Takigawa M. ( 1997 ) Thrombin and trypsin induce granulocyte–macrophage colony-stimulating factor and interleukin-6 gene expression in cultured normal human keratinocytes. Proc. Assoc. Am. Physicians 109, 190 – 207.en_US
dc.identifier.citedreferenceWang J. L., Kalyanaraman S., Vivo M. D. and Gautam N. ( 1996 ) Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins. Biochem. J. 320, 87 – 91.en_US
dc.identifier.citedreferenceXu W. F., Andersen H., Whitmore T. E., Presnell S. R., Yee D. P., Ching A., Gilbert T., Davie E. W. and Foster D. C. ( 1998 ) Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95, 6642 – 6646.en_US
dc.identifier.citedreferenceZhang H., Buckley N. E., Gibson K. and Spiegel S. ( 1990 ) Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J. Biol. Chem. 265, 76 – 81.en_US
dc.identifier.citedreferenceZhang W., Sarosi G. Jr, Barnhart D., Yule D. I. and Mulholland M. W. ( 1997 ) Endothelin-activated calcium signaling in enteric glia derived from neonatal guinea pig. Am. J. Physiol. 272, G1175 – G1185.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.