Show simple item record

Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanism

dc.contributor.authorPark, Yang Haeen_US
dc.contributor.authorKantor, Lanaen_US
dc.contributor.authorGuptaroy, Bipashaen_US
dc.contributor.authorZhang, Minjiaen_US
dc.contributor.authorWang, Kevin K. W.en_US
dc.contributor.authorGnegy, Margaret E.en_US
dc.date.accessioned2010-04-01T15:33:20Z
dc.date.available2010-04-01T15:33:20Z
dc.date.issued2003-12en_US
dc.identifier.citationPark, Yang Hae; Kantor, Lana; Guptaroy, Bipasha; Zhang, Minjia; Wang, Kevin K. W.; Gnegy, Margaret E. (2003). "Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanism." Journal of Neurochemistry 87(6): 1546-1557. <http://hdl.handle.net/2027.42/66040>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66040
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14713310&dopt=citationen_US
dc.description.abstractRepeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 µm) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12- O -tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 µm Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.en_US
dc.format.extent402790 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2003 International Society for Neurochemistryen_US
dc.subject.otherCultured Cellsen_US
dc.subject.otherExtracellular Signal-regulated Kinaseen_US
dc.subject.otherNeurite Outgrowthen_US
dc.subject.otherProtein Kinasesen_US
dc.subject.otherRepeated Amphetamineen_US
dc.subject.otherTransporter-mediated Dopamine Releaseen_US
dc.titleRepeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanismen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother† Departments of Psychiatry & Neuroscience, University of Florida, Gainesville, Florida, USAen_US
dc.identifier.pmid14713310en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66040/1/j.1471-4159.2003.02127.x.pdf
dc.identifier.doi10.1046/j.1471-4159.2003.02127.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBauman A. L., Apparsundaram S., Ramamoorthy S., Wadzinski B. E., Vaughan R. A. and Blakely R. D. ( 2000 ) Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A. J. Neurosci. 20, 7571 – 7578.en_US
dc.identifier.citedreferenceBen-Shlomo H., Sigmund O., Stabel S., Reiss N. and Naor Z. ( 1991 ) Preferential release of catecholamine from permeabilized PC12 cells by alpha- and beta-type protein kinase C subspecies. Biochem. J. 280, 65 – 69.en_US
dc.identifier.citedreferenceBerhow M. T., Hiroi N. and Nestler E. J. ( 1996 ) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J. Neurosci. 16, 4707 – 4715.en_US
dc.identifier.citedreferenceBlakely R. D., Ramamoorthy S., Schroeter S., Qian Y., Apparsundaram S., Galli A. and DeFelice L. J. ( 1998 ) Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Biol. Psychiatry 44, 169 – 178.en_US
dc.identifier.citedreferenceBonisch H. ( 1984 ) The transport of (+)-amphetamine by the neuronal noradrenaline carrier. Naunyn Schmiedebergs Arch. Pharmacol. 327, 267 – 272.en_US
dc.identifier.citedreferenceBorgatti P., Mazzoni M., Carini C., Neri L. M., Marchisio M., Bertolaso L., Previati M., Zauli G. and Capitani S. ( 1996 ) Changes of nuclear protein kinase C activity and isotype composition in PC12 cell proliferation and differentiation. Exp. Cell Res. 224, 72 – 78.en_US
dc.identifier.citedreferenceBrandon E. P., Logue S. F., Adams M. R., Qi M., Sullivan S. P., Matsumoto A. M., Dorsa D. M., Wehner J. M., McKnight G. S. and Idzerda R. L. ( 1998 ) Defective motor behavior and neural gene expression in RIIbeta-protein kinase A mutant mice. J. Neurosci. 18, 3639 – 3649.en_US
dc.identifier.citedreferenceBrowman K. E., Kantor L., Richardson S., Badiani A., Robinson T. E. and Gnegy M. E. ( 1998 ) Injection of the protein kinase C inhibitor Ro31-8220 into the nucleus accumbens attenuates the acute response to amphetamine: tissue and behavioral studies. Brain Res. 814, 112 – 119.en_US
dc.identifier.citedreferenceBunzow J. R., Sonders M. S., Arttamangkul S. et al. ( 2001 ) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60, 1181 – 1188.en_US
dc.identifier.citedreferenceChen Y. H., Chow S. N. and Tsai M. C. ( 1998 ) Ratiometric confocal Ca 2+ measurements with visible wavelength indicators in d-amphetamine-treated central snail neuron. General Pharmacol. 31, 783 – 788.en_US
dc.identifier.citedreferenceChoe E. S., Chung K. T., Mao L. and Wang J. Q. ( 2002 ) Amphetamine increases phosphorylation of extracellular signal-regulated kinase and transcription factors in the rat striatum via group I metabotropic glutamate receptors. Neuropsychopharmacology 27, 565 – 575.en_US
dc.identifier.citedreferenceCowell R. M., Kantor L., Hewlett G. H., Frey K. A. and Gnegy M. E. ( 2000 ) Dopamine transporter antagonists block phorbol ester-induced dopamine release and dopamine transporter phosphorylation in striatal synaptosomes. Eur. J. Pharmacol. 389, 59 – 65.en_US
dc.identifier.citedreferenceCrisostomo E. A., Duncan P. W., Propst M., Dawson D. V. and Davis J. N. ( 1988 ) Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann. Neurol. 23, 94 – 97.en_US
dc.identifier.citedreferenceDaniels G. M. and Amara S. G. ( 1999 ) Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J. Biol. Chem. 274, 35794 – 35801.en_US
dc.identifier.citedreferenceDavies S. P., Reddy H., Caivano M. and Cohen P. ( 2000 ) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 1 – 105.en_US
dc.identifier.citedreferenceDerbez A. E., Mody R. M. and Werling L. L. ( 2002 ) Sigma (2)-receptor regulation of dopamine transporter via activation of protein kinase C. J. Pharmacol. Exp. Ther. 301, 306 – 314.en_US
dc.identifier.citedreferenceGiambalvo C. T. ( 1992a ) Protein kinase C and dopamine transport – 1. Effects of amphetamine in vivo. Neuropharmacology 31, 1201 – 1210.en_US
dc.identifier.citedreferenceGiambalvo C. T. ( 1992b ) Protein kinase C and dopamine transport – 2. Effects of amphetamine in vitro. Neuropharmacology 31, 1211 – 1222.en_US
dc.identifier.citedreferenceGjertsen B. T., Mellgren G., Otten A., Maronde E., Genieser H. G., Jastorff B., Vintermyr O. K., McKnight G. S. and Doskeland S. O. ( 1995 ) Novel (Rp)-cAMPS analogs as tools for inhibition of cAMP-kinase in cell culture. Basal cAMP-kinase activity modulates interleukin-1 beta action. J. Biol. Chem. 270, 20599 – 20607.en_US
dc.identifier.citedreferenceGnegy M. E., Hong P. and Ferrell S. T. ( 1993 ) Phosphorylation of neuromodulin in rat striatum after acute and repeated, intermittent amphetamine. Brain Res. Mol. Brain Res. 20, 289 – 298.en_US
dc.identifier.citedreferenceGreene L. A. and Tischler A. S. ( 1976 ) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 2424 – 2428.en_US
dc.identifier.citedreferenceHall F. L., Fernyhough P., Ishii D. N. and Vulliet P. R. ( 1988 ) Suppression of nerve growth factor-directed neurite outgrowth in PC12 cells by sphingosine, an inhibitor of protein kinase C. J. Biol. Chem. 263, 4460 – 4466.en_US
dc.identifier.citedreferenceHansen T. O., Rehfeld J. F. and Nielsen F. C. ( 2000 ) Cyclic AMP-induced neuronal differentiation via activation of p38 mitogen-activated protein kinase. J. Neurochem. 75, 1870 – 1877.en_US
dc.identifier.citedreferenceHug H. and Sarre T. F. ( 1993 ) Protein kinase C isoenzymes: Divergence in signal transduction. Biochem. J. 291, 329 – 343.en_US
dc.identifier.citedreferenceIngram S. L. and Amara S. G. ( 2000 ) Arachidonic acid stimulates a novel cocaine-sensitive cation conductance associated with the human dopamine transporter. J. Neurosci. 20, 550 – 557.en_US
dc.identifier.citedreferenceIwata S., Hewlett G. H. K., Ferrell S. T., Czernik A. J., Meiri K. F. and Gnegy M. E. ( 1996 ) Increased in vivo phosphorylation of neuromodulin and synapsin I in striatum from rats treated with repeated amphetamine. J. Pharmacol. Exp. Ther. 278, 1428 – 1434.en_US
dc.identifier.citedreferenceIwata S., Hewlett G. H. K., Ferrell S. T., Kantor L. and Gnegy M. E. ( 1997a ) Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J. Pharmacol. Exp. Ther. 283, 1445 – 1452.en_US
dc.identifier.citedreferenceIwata S., Hewlett G. H. K. and Gnegy M. E. ( 1997b ) Amphetamine increases the phosphorylation of neuromodulin and synapsin I in rat striatal synaptosomes. Synapse 26, 281 – 291.en_US
dc.identifier.citedreferenceJessen U., Novitskaya V., Pedersen N., Serup P., Berezin V. and Bock E. ( 2001 ) The transcription factors CREB and c-Fos play key roles in NCAM-mediated neuritogenesis in PC12-E2 cells. J. Neurochem. 79, 1149 – 1160.en_US
dc.identifier.citedreferenceKantor L. and Gnegy M. E. ( 1998a ) Enhanced AMPH-mediated DA release in AMPH-pretreated rats depends on Ca 2+ and CaM-dependent protein kinase II. FASEB J. 12, A159.en_US
dc.identifier.citedreferenceKantor L. and Gnegy M. E. ( 1998b ) Protein kinase C inhibitors block amphetamine-mediated dopamine release in rat striatal slices. J. Pharmacol. Exp. Ther. 284, 594 – 598.en_US
dc.identifier.citedreferenceKantor L., Hewlett G. H. and Gnegy M. E. ( 1999 ) Enhanced amphetamine- and K + -mediated dopamine release in rat striatum after repeated amphetamine: differential requirements for Ca 2+ - and calmodulin-dependent phosphorylation and synaptic vesicles. J. Neurosci. 19, 3801 – 3808.en_US
dc.identifier.citedreferenceKantor L., Hewlett G. H., Park Y. H., Richardson-Burns S. M., Mellon M. J. and Gnegy M. E. ( 2001 ) Protein kinase C and intracellular calcium are required for amphetamine-mediated dopamine release via the norepinephrine transporter in undifferentiated PC12 cells. J. Pharmacol. Exp. Ther. 297, 1016 – 1024.en_US
dc.identifier.citedreferenceKantor L., Park Y. H., Wang K. K. W. and Gnegy M. E. ( 2002 ) Enhanced amphetamine-mediated dopamine release develops in PC12 cells after repeated amphetamine treatment. Eur. J. Pharmacol. 451, 27 – 35.en_US
dc.identifier.citedreferenceKoike T. ( 1983 ) Nerve growth factor-induced neurite outgrowth of rat pheochromocytoma PC 12 cells: dependence on extracellular Mg 2+ and Ca 2+. Brain Res. 289, 293 – 303.en_US
dc.identifier.citedreferenceKolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marme D. and Rapp U. R. ( 1993 ) Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364, 249 – 252.en_US
dc.identifier.citedreferenceKramer H. K., Poblete J. C. and Azmitia E. C. ( 1998 ) Characterization of the translocation of protein kinase C (PKC) by 3,4-methylenedioxymethamphetamine (MDMA/ecstasy) in synaptosomes: evidence for a presynaptic localization involving the serotonin transporter (SERT). Neuropsychopharmacology 19, 265 – 277.en_US
dc.identifier.citedreferenceLazarovici P., Jiang H. and Fink D. Jr ( 1998 ) The 38-amino-acid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21 (ras) G protein, and pp60 (c-src) cytoplasmic tyrosine kinase. Mol. Pharmacol. 54, 547 – 558.en_US
dc.identifier.citedreferenceLicata S. C. and Pierce R. C. ( 2003 ) The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitization. J. Neurochem. 85, 14 – 22.en_US
dc.identifier.citedreferenceLiu H., Palmer D., Jimmo S. L., Tilley D. G., Dunkerley H. A., Pang S. C. and Maurice D. H. ( 2000 ) Expression of phosphodiesterase 4D (PDE4D) is regulated by both the cyclic AMP-dependent protein kinase and mitogen-activated protein kinase signaling pathways. A potential mechanism allowing for the coordinated regulation of PDE4D activity and expression in cells. J. Biol. Chem. 275, 26615 – 26624.en_US
dc.identifier.citedreferenceMolderings G. J., Bonisch H., Hammermann R., Gothert M. and Bruss M. ( 2002 ) Noradrenaline release-inhibiting receptors on PC12 cells devoid of alpha(2(–)) and CB(1) receptors: similarities to presynaptic imidazoline and edg receptors. Neurochem. Int. 40, 157 – 167.en_US
dc.identifier.citedreferenceMons N., Decorte L., Jaffard R. and Cooper D. M. ( 1998 ) Ca 2+ -sensitive adenylyl cyclases, key integrators of cellular signalling. Life Sci. 62, 1647 – 1652.en_US
dc.identifier.citedreferenceNakafuku M. and Kaziro Y. ( 1993 ) Epidermal growth factor and transforming growth factor-alpha can induce neuronal differentiation of rat pheochromocytoma PC12 cells under particular culture conditions. FEBS Lett. 315, 227 – 232.en_US
dc.identifier.citedreferenceNarkar V. A., Hussain T., Pedemonte C. and Lokhandwala M. F. ( 2001 ) Dopamine D (2) receptor activation causes mitogenesis via p44/42 mitogen-activated protein kinase in opossum kidney cells. J. Am. Soc. Nephrol. 12, 1844 – 1852.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1988 ) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661 – 665.en_US
dc.identifier.citedreferenceOak J. N., Lavine N. and Van Tol H. H. ( 2001 ) Dopamine D(4) and D(2L) receptor stimulation of the mitogen-activated protein kinase pathway is dependent on trans-activation of the platelet-derived growth factor receptor. Mol. Pharmacol. 60, 92 – 103.en_US
dc.identifier.citedreferenceOtani S., Auclair N., Desce J. M., Roisin M. P. and Crepel F. ( 1999 ) Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J. Neurosci. 19, 9788.en_US
dc.identifier.citedreferencePark Y. H., Kantor L., Wang K. K. W. and Gnegy M. E. ( 2002 ) Repeated, intermittent treatment with amphetamine induces neurite outgrowth in rat pheochromocytoma cells (PC12 cells). Brain Res. 951, 43 – 52.en_US
dc.identifier.citedreferencePierce R. C., Pierce-Bancroft A. F. and Prasad B. M. ( 1999 ) Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J. Neurosci. 19, 8685 – 8695.en_US
dc.identifier.citedreferenceRamamoorthy S., Giovanetti E., Qian Y. and Blakely R. D. ( 1998 ) Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J. Biol. Chem. 273, 2458 – 2466.en_US
dc.identifier.citedreferenceRobinson T. E. ( 1991 ) The neurobiology of amphetamine psychosis: Evidence from studies with an animal model. In: Taniguchi Symposia on Brain Sciences, Vol. 14, Biological Basis of Schizophrenic Disorders ( Nakazawa, T., ed.), pp. 185 – 201. Japan Scientific Societies Press, Tokyo.en_US
dc.identifier.citedreferenceRobinson T. E. and Becker J. B. ( 1986 ) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11, 157 – 198.en_US
dc.identifier.citedreferenceRobinson T. E. and Kolb B. ( 1997 ) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 17, 8491 – 8497.en_US
dc.identifier.citedreferenceRobinson T. E. and Kolb B. ( 1999 ) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598 – 1604.en_US
dc.identifier.citedreferenceRothman R. B., Dersch C. M., Carroll F. I. and Ananthan S. ( 2002 ) Studies of the biogenic amine transporters. VIII: identification of a novel partial inhibitor of dopamine uptake and dopamine transporter binding. Synapse 43, 268 – 274.en_US
dc.identifier.citedreferenceSeiden L. S., Sabol K. E. and Ricaurte G. A. ( 1993 ) Amphetamine: Effects on catecholamine systems and behavior. Annu. Rev. Pharmacol. Toxicol. 33, 639 – 677.en_US
dc.identifier.citedreferenceSelf D. W., Genova L. M., Hope B. T., Barnhart W. J., Spencer J. J. and Nestler E. J. ( 1998 ) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J. Neurosci. 18, 1848 – 1859.en_US
dc.identifier.citedreferenceSteketee J. D. ( 1997 ) Cocaine-induced behavioral sensitization is associated with increased protein kinase C activity in the ventral tegmental area. Neurosci. Res. Commun. 20, 59 – 67.en_US
dc.identifier.citedreferenceStroemer R. P., Kent T. A. and Hulsebosch C. E. ( 1998 ) Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with d-amphetamine therapy after neocortical infarction in rats. Stroke 29, 2381 – 2393.en_US
dc.identifier.citedreferenceTolliver B. K., Ho L. B., Reid M. S. and Berger S. P. ( 1996 ) Evidence for involvement of ventral tegmental area cyclic AMP systems in behavioral sensitization to psychostimulants. J. Pharmacol. Exp. Ther. 278, 411 – 420.en_US
dc.identifier.citedreferenceTolliver B. K., Ho L. B., Fox L. M. and Berger S. P. ( 1999 ) Necessary role for ventral tegmental area adenylate cyclase and protein kinase A in induction of behavioral sensitization to intraventral tegmental area amphetamine. J. Pharmacol. Exp. Ther. 289, 38 – 47.en_US
dc.identifier.citedreferenceTrilivas I. and Brown J. H. ( 1989 ) Increases in intracellular Ca 2+ regulate the binding of [3H]phorbol 12,13-dibutyrate to intact 1321N1 astrocytoma cells. J. Biol. Chem. 264, 3102 – 3107.en_US
dc.identifier.citedreferenceValjent E., Corvol J. C., Pages C., Besson M. J., Maldonado R. and Caboche J. ( 2000 ) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 8701 – 8709.en_US
dc.identifier.citedreferenceVaudry D., Stork P. J., Lazarovici P. and Eiden L. E. ( 2002 ) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 1648 – 1649.en_US
dc.identifier.citedreferenceWilliams N. G., Zhong H. and Minneman K. P. ( 1998 ) Differential coupling of alpha1-, alpha2-, and beta-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected PC12 cells. J. Biol. Chem. 273, 24624 – 24632.en_US
dc.identifier.citedreferenceWolf M. E. ( 1998 ) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679 – 720.en_US
dc.identifier.citedreferenceYan Z., Feng J., Fienberg A. A. and Greengard P. ( 1999 ) D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc. Natl Acad. Sci. USA 96, 11607.en_US
dc.identifier.citedreferenceYao H., York R. D., Misra-Press A., Carr D. W. and Stork P. J. ( 1998 ) The cyclic adenosine monophosphate-dependent protein kinase (PKA) is required for the sustained activation of mitogen-activated kinases and gene expression by nerve growth factor. J. Biol. Chem. 273, 8240 – 8247.en_US
dc.identifier.citedreferenceYingling J. D., Fuller L. Z. and Jackson B. A. ( 1994 ) Modulation of cyclic AMP metabolism by protein kinase C in PC18 cells. Neurosci. Lett. 166, 157 – 160.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.