Show simple item record

Enhanced Coupling of Neonatal Muscarinic Receptors in Rat Brain to Phosphoinositide Turnover

dc.contributor.authorHeacock, Anne M.en_US
dc.contributor.authorFisher, Stephen K.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T15:34:36Z
dc.date.available2010-04-01T15:34:36Z
dc.date.issued1987-06en_US
dc.identifier.citationHeacock, Anne M.; Fisher, Stephen K.; Agranoff, Bernard W. (1987). "Enhanced Coupling of Neonatal Muscarinic Receptors in Rat Brain to Phosphoinositide Turnover." Journal of Neurochemistry 48(6): 1904-1911. <http://hdl.handle.net/2027.42/66062>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66062
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=3033155&dopt=citationen_US
dc.description.abstractThe relationship between the density of the muscarinic receptor in developing rat cerebral cortex and its coupling to phosphoinositide turnover is examined. Tissue slices from rats of various ages were incubated with myo- [2- 3 H]inositol, and the effect of carbamoylcholine on the release of total inositol phosphates was determined. Binding of [ 3 H]quinuclidinyl benzilate was determined in the same tissue. Although muscarinic receptor density in day-18 embryonic cortex was only 5% of that in the adult, the maximal response of stimulated phosphoinositide turnover to carbamoylcholine (1–10 m M ) was at the adult level (i.e., threefold increase). Comparison of the dependence of the turnover on carbamoylcholine concentration revealed that in neonates, the dose-response curve was shifted to the left, giving a half-maximal effect at concentrations approximately tenfold lower than that in the adult. In addition, the partial muscarinic agonists oxotremorine-2 and bethanechol were both more efficacious in young rats than in adults. The differences could not be accounted for either by alterations in agonist affinity for the receptor or by the presence of “spare” muscarinic receptors. These results indicate that muscarinic receptors in fetal and newborn rat cerebral cortex are more efficiently coupled to stimulation of phosphoinositide turnover than in the adult.en_US
dc.format.extent864143 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1987 International Society for Neurochemistryen_US
dc.subject.otherInositol Phospholipiden_US
dc.subject.otherMuscarinic Receptorsen_US
dc.subject.otherRat Cerebral Cortex Developmenten_US
dc.titleEnhanced Coupling of Neonatal Muscarinic Receptors in Rat Brain to Phosphoinositide Turnoveren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNeuroscience Laboratory, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid3033155en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66062/1/j.1471-4159.1987.tb05754.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1987.tb05754.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBerridge M. J. ( 1983 ) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyze polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212, 849 – 858.en_US
dc.identifier.citedreferenceBerridge M. J. and Irvine R. F. ( 1984 ) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315 – 321.en_US
dc.identifier.citedreferenceBerridge M. J., Downes C. P., and Hanley M. R. ( 1982 ) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587 – 595.en_US
dc.identifier.citedreferenceBerridge M. J., Dawson R. M. C., Downes C. P., Heslop J. P., and Irvine, R. F. ( 1983 ) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212, 473 – 482.en_US
dc.identifier.citedreferenceBirdsall N. J. M., Burgen A. S. V., and Hulme E. C. ( 1978 ) The binding of agonists to brain muscarinic receptors. Mol. Pharmacol. 14, 723 – 726.en_US
dc.identifier.citedreferenceBrown J. H. and Brown S. L. ( 1984 ) Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J. Biol. Chem. 259, 3777 – 3781.en_US
dc.identifier.citedreferenceCoyle J. T. and Yamamura H. I. ( 1976 ) Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain. Brain Res. 118, 429 – 440.en_US
dc.identifier.citedreferenceDownes C. P. and Wusteman W. M. ( 1983 ) Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist stimulated inositol phospholipid metabolism in rat parotid glands. Biochem. J. 216, 633 – 640.en_US
dc.identifier.citedreferenceEhlert F. J., Roeske W. R., and Yamamura H. I. ( 1981 ) Muscarinic receptor: Regulation by guanine nucleotides, ions and N-ethylmaleimide. Fed. Proc. 40, 153 – 159.en_US
dc.identifier.citedreferenceEk B. and Nahorski S. R. ( 1986 ) Muscarinic receptor mediated inositol phospholipid metabolism in guinea-pig parotid gland, ileum and cortex. Trends Pharmacol. Sci. Suppl.: Subtypes of Muscarinic Receptors ii, 84.en_US
dc.identifier.citedreferenceEvans T., Hepler J. R., Masters S. B., Brown J. H., and Harden T. K. ( 1985 ) Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors. Biochem. J. 232, 751 – 757.en_US
dc.identifier.citedreferenceFisher S. K. ( 1986 ) Inositol lipids and signal transduction at CNS muscarinic receptors. Trends Pharmacol. Sci. Suppl.: Subtypes of Muscarinic Receptors ii, 61 – 65.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1985 ) The biochemical basis and functional significance of enhanced phosphatidate and phosphoinositide turnover, in Phospholipids in Nervous Tissues ( Eichberg J., ed ), pp. 241 – 295. John Wiley, New York.en_US
dc.identifier.citedreferenceFisher S. K. and Bartus R. T. ( 1985 ) Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain. J. Neurochem. 45, 1085 – 1095.en_US
dc.identifier.citedreferenceFisher S. K. and Snider R. M. ( 1986 ) Receptor occupancy requirements for muscarinic receptor-stimulated phosphoinositide turnover in brain and in neuroblastoma. (Abstr.) Soc. Neurosci. Abstr. 12, 491.en_US
dc.identifier.citedreferenceFisher S. K., Klinger P. D., and Agranoff B. W. ( 1983 ) Muscarinic agonist binding and phospholipid turnover in brain. J. Biol. Chem. 258, 7358 – 7363.en_US
dc.identifier.citedreferenceFisher S. K., Figueiredo J. C., and Bartus R. T. ( 1984 ) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 1171 – 1179.en_US
dc.identifier.citedreferenceFlorio V. A. and Sternweiss P. C. ( 1985 ) Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 260, 3477 – 3483.en_US
dc.identifier.citedreferenceGeiger P. J. and Bessman S. P. ( 1972 ) Protein determination by Lowry's method in the presence of sulfhydryl reagents. Anal. Biochem. 49, 467 – 473.en_US
dc.identifier.citedreferenceGil D. W. and Wolfe B. B. ( 1985 ) Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J. Pharmacol. Exp. Ther. 232, 608 – 616.en_US
dc.identifier.citedreferenceGonzales R. A. and Crews F. T. ( 1985 ) Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes. Biochem. J. 232, 799 – 804.en_US
dc.identifier.citedreferenceGoodhardt M., Ferry N., Geynet P., and Hanoune J. ( 1982 ) Hepatic Α 1 -adrenergic receptors show agonist-specific regulation by guanine nucleotides. J. Biol. Chem. 257, 11577 – 11583.en_US
dc.identifier.citedreferenceHawthorne J. N. ( 1986 ) Does receptor-linked phosphoinositide metabolism provide messengers mobilizing calcium in nervous tissue ? Int. Rev. Neurobiol. 28, 241 – 273.en_US
dc.identifier.citedreferenceHeacock A. M., Fisher S. K., and Agranoff B. W. ( 1986 ) Developmental aspects of muscarinic receptor coupling to polyphosphoinositide turnover in rat cortex. (Abstr.) Soc. Neurosci. Abstr. 12, 491.en_US
dc.identifier.citedreferenceHokin L. E. and Hokin M. R. ( 1955 ) Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. Biophys. Acta 18, 102 – 110.en_US
dc.identifier.citedreferenceJacobson M. D., Wusteman M., and Downes C. P. ( 1985 ) Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland. J. Neurochem. 44, 465 – 472.en_US
dc.identifier.citedreferenceJohnson R. D. and Minneman K. P. ( 1985 ) Α 1 -Adrenergic receptors and stimulation of [ 3 H]inositol metabolism in rat brain: Regional distribution and parallel inactivation. Brain Res. 341, 7 – 15.en_US
dc.identifier.citedreferenceJoseph S. K. ( 1985 ) Receptor-stimulated phosphoinositide metabolism: A role for GTP-binding proteins ? Trends Biochem. Sci. 10, 297 – 298.en_US
dc.identifier.citedreferenceKuhar M. J., Birdsall N. J. M., Burgen A. S. V., and Hulme E. C. ( 1980 ) Ontogeny of muscarinic receptors in rat brain. Brain Res. 184, 375 – 383.en_US
dc.identifier.citedreferenceLarge T. H., Cho N. J., De Mello F. G., and Klein W. L. ( 1985a ) Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis. J. Biol. Chem. 260, 8873 – 8881.en_US
dc.identifier.citedreferenceLarge T. H., Rauh J. J., De Mello F. G., and Klein W. L. ( 1985b ) Two molecular weight forms of muscarinic acetylcholine receptors in the avian central nervous system: Switch in predominant form during differentiation of synapses. Proc. Natl. Acad. Sci. USA 82, 8785 – 8789.en_US
dc.identifier.citedreferenceLarge T. H., Lambert M. P., Gremillion M. A., and Klein W. L. ( 1986 ) Parallel postnatal development of choline acetyltransferase activity and muscarinic acetylcholine receptors in the rat olfactory bulb. J. Neurochem. 46, 671 – 680.en_US
dc.identifier.citedreferenceLee W., Nicklaus K. J., Manning D. R., and Wolfe B. B. ( 1985 ) Ontogeny of muscarinic receptor binding sites and muscarinic receptor-mediated stimulation of phosphoinositide breakdown and inhibition of cyclic AMP accumulation in rat forebrain. Soc. Neurosci. Abstr. 11, 95.en_US
dc.identifier.citedreferenceLiang B. T., Hellmich M. R., Neer E. J., and Galper J. B. ( 1986 ) Development of muscarinic cholinergic inhibition of adenylate cyclase in embryonic chick heart. J. Biol. Chem. 261, 9011 – 9021.en_US
dc.identifier.citedreferenceLitosch I., Wallis C., and Fain J. N. ( 1985 ) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. J. Biol. Chem. 260, 5464 – 5471.en_US
dc.identifier.citedreferenceMcKinney M. and Coyle J. T. ( 1982 ) Regulation of neocortical muscarinic receptors: Effects of drug treatment and lesions. J. Neurosci. 2, 97 – 105.en_US
dc.identifier.citedreferenceMcKinney M., Stenstrom C., and Richelson E. ( 1985 ) Muscarinic responses and binding in a murine neuroblastoma clone (NIE-115). Mediation of separate responses by high affinity and low affinity agonist-receptor conformations. Mol. Pharmacol. 27, 223 – 235.en_US
dc.identifier.citedreferenceNicoletti F., Iadarola M. J., Wroblewski J. T., and Costa E. ( 1986 ) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with Α 1 -adrenoceptors. Proc. Natl. Acad. Sci. USA 83, 1931 – 1935.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1984 ) Turnover of inositol phospholipids and signal transduction. Science 225, 1365 – 1370.en_US
dc.identifier.citedreferenceOrellana S. A. and Brown J. H. ( 1985 ) Stimulation of phosphoinositide hydrolysis and inhibition of cyclic AMP formation by muscarinic agonists in developing chick heart. Biochcm. Pharmacol. 34, 1321 – 1324.en_US
dc.identifier.citedreferenceRauch S. L. and Hitzemann R. J. ( 1986 ) Developmental changes in synaptic membrane order: A comparison of regions in the rat brain. Dev. Brain Res. 26, 221 – 227.en_US
dc.identifier.citedreferenceReddy P. V. and Sastry P. S. ( 1979 ) Studies on neurotransmitter-stimulated phospholipid metabolism with cerebral tissue suspensions: A possible biochemical correlate of synaptogenesis in normal and undernourished rats. Brain Res. 168, 287 – 298.en_US
dc.identifier.citedreferenceSchoepp D. D. and Rutledge C. O. ( 1985 ) Comparison of postnatal changes in alpha 1 -adrenoceptor binding and adrenergic stimulation of phosphoinositide hydrolysis in rat cerebral cortex. Biochem. Pharmacol. 34, 2705 – 2711.en_US
dc.identifier.citedreferenceSteinberg S. F., Drugge E. D., Bilezikian J. P., and Robinson R. B. ( 1985 ) Acquisition by innervated cardiac myocytes of a pertussis toxin-specific regulatory protein linked to the Α 1 -receptor. Science 230, 186 – 188.en_US
dc.identifier.citedreferenceSun G. Y. and Foudin L. L. ( 1985 ) Phospholipid composition and metabolism in the developing and aging nervous system, in Phospholipids in Nervous Tissue ( Eichberg J., ed ), pp. 79 – 134. John Wiley, New York.en_US
dc.identifier.citedreferenceWilson D. B., Neufeld E. J., and Majerus P. W. ( 1985 ) Phosphoinositide interconversion in thrombin-stimulated human platelets. J. Biol. Chem. 260, 1046 – 1051.en_US
dc.identifier.citedreferenceYoung J. M., Hiley R., and Burgen A. S. V. ( 1972 ) Homologues of benzilylcholine mustard. J. Pharm. Pharmacol. 24, 950 – 954.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.