Show simple item record

Modulation of Opioid Receptor Binding by Cis and Trans Fatty Acids

dc.contributor.authorRemmers, Ann E.en_US
dc.contributor.authorNordby, Gordon L.en_US
dc.contributor.authorMedzihradsky, Fedoren_US
dc.date.accessioned2010-04-01T15:35:55Z
dc.date.available2010-04-01T15:35:55Z
dc.date.issued1990-12en_US
dc.identifier.citationRemmers, Ann E.; Nordby, Gordon L.; Medzihradsky, Fedor (1990). "Modulation of Opioid Receptor Binding by Cis and Trans Fatty Acids." Journal of Neurochemistry 55(6): 1993-2000. <http://hdl.handle.net/2027.42/66085>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66085
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2172466&dopt=citationen_US
dc.description.abstractIn synaptosomal brain membranes, the addition of oleic acid (cis), elaidic acid (trans), and the cis and trans isomers of vaccenic acid, at a concentration of 0.87 Μmol of lipid/mg of protein, strongly reduced the B max and, to a lesser degree, the binding affinity of the Μ-selective opioid [ 3 H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol ([ 3 H]DAMGO). At comparable membrane content, the cis isomers of the fatty acids were more potent than their trans counterparts in inhibiting ligand binding and in decreasing membrane microviscosity, both at the membrane surface and in the core. However, trans- vaccenic acid affected opioid receptor binding in spite of just marginally altering membrane microviscosity. If the receptors were uncoupled from guanine nucleotide regulatory protein, an altered inhibition profile was obtained: the impairment of K D by the fatty acids was enhanced and that of B max reduced. Receptor interaction of the Δ-opioid [ 3 H](D-Pen 2 ,D-Pen 5 )enkephalin was modulated by lipids to a greater extent than that of [ 3 H]DAMGO: saturable binding was abolished by both oleic and elaidic acids. The binding of [ 3 H]naltrexone was less susceptible to inhibition by the fatty acids, particularly in the presence of sodium. In the absence of this cation, however, cis -vaccenic acid abolished the low-affinity binding component of [ 3 H]naltrexone. These findings support the membrane model of opioid receptor sequestration depicting different ionic environments for the Μ- and Δ-binding sites. The results of this work show distinct modulation of different types and molecular states of opioid receptor by fatty acids through mechanisms involving membrane fluidity and specific interactions with membrane constituents.en_US
dc.format.extent848649 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1990 International Society for Neurochemistryen_US
dc.subject.otherΜ- and Δ-opioid receptorsen_US
dc.subject.otherLigand-receptor interactionen_US
dc.subject.otherCis and trans fatty acidsen_US
dc.subject.otherMembrane lipid contenten_US
dc.subject.otherMembrane microviscosityen_US
dc.titleModulation of Opioid Receptor Binding by Cis and Trans Fatty Acidsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Biological Chemistry and Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid2172466en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66085/1/j.1471-4159.1990.tb05787.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1990.tb05787.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAbood L. G., Butler M., and Reynolds D. ( 1980 ) Effect of calcium and physical state of neural membranes on phosphatidylserine requirement for opioid binding. Mol. Pharmacol. 17, 290 – 294.en_US
dc.identifier.citedreferenceGordon, L. M., eds ( 1988 ) Physiological Regulation of Membrane Fluidity. Alan R. Liss, Inc., New York.en_US
dc.identifier.citedreferenceBen-Arie N., Gileadi C., and Schramm M. ( 1988 ) Interaction of the Β-adrenergic receptor with G s following delipidation. Specific lipid requirements for G s activation and GTPase function. Eur. J. Pharmacol. 176, 649 – 654.en_US
dc.identifier.citedreferenceBradford M. M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceCahill A. L. and Medzihradsky F. ( 1976 ) Interaction of central nervous system drugs with synaptosomal transport processes. Biochem. Pharmacol. 25, 2257 – 2264.en_US
dc.identifier.citedreferenceCarruthers A. and Melchior D. L. ( 1986 ) How bilayer lipids affect membrane protein activity. Trends Biochem. Sci. 11, 331 – 335.en_US
dc.identifier.citedreferenceCarruthers A. and Melchior D. L. ( 1988 ) Role of the bilayer lipids in governing membrane transport processes, in Lipid Domains and the Relationship to Membrane Function ( Gordon L. M., eds ), pp. 201 – 225. Alan R. Liss, Inc., New York.en_US
dc.identifier.citedreferenceClark M. J., Carter B. D., and Medzihradsky F. ( 1988 ) Selectivity of ligand binding to opioid receptors in brain membranes from the rat, monkey and guinea pig. Eur. J. Pharmacol. 148, 343 – 351.en_US
dc.identifier.citedreferenceFischel S. V. and Medzihradsky F. ( 1981 ) Scatchard analysis of opiate receptor binding. Mol. Pharmacol. 20, 269 – 279.en_US
dc.identifier.citedreferenceGillan M. G. C., Kosterlitz H. W., and Paterson S. J. ( 1980 ) Comparison of the binding characteristics of tritiated opiates and opioid peptides. Br. J. Pharmacol. 70, 481 – 490.en_US
dc.identifier.citedreferenceHasegawa J.-I., Loh H. H., and Lee N. M. ( 1987 ) Lipid requirement for Μ opioid receptor binding. J. Neurochem. 49, 1007 – 1012.en_US
dc.identifier.citedreferenceHauser H., Guyer W., and Howell K. ( 1979 ) Lateral distribution of negatively charged lipids in lecithin membranes. Clustering of fatty acids. Biochemistry 18, 3285 – 3291.en_US
dc.identifier.citedreferenceHo W. K. K. and Cox B. M. ( 1982 ) Reduction of opioid binding in neuroblastoma × glioma cells grown in medium containing unsaturated fatty acids. Biochim. Biophys. Acta 688, 211 – 217.en_US
dc.identifier.citedreferenceKarnovsky M. J., Kleinfield A. M., Hoover R. L., and Klausner R. D. ( 1982 ) The concept of lipid domains in membranes. J. Cell Biol. 94, 1 – 6.en_US
dc.identifier.citedreferenceKates M and Manson L. A. ( 1984 ) Membrane fluidity. Plenum Press, New York.en_US
dc.identifier.citedreferenceKuhry J.-G., Fonteneau P., Duportail G., Maechling C., and Laustriat G. ( 1983 ) TMA-DPH: a suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells. Cell Biophys. 5, 129 – 140.en_US
dc.identifier.citedreferenceLaw P. Y., Griffon M. T., Koehler J. E., and Loh H. H. ( 1983 ) Attenuation of enkephalin activity in neuroblastoma × glioma NG108–15 hybrid cells by phospholipases. J. Neurochem. 40, 267 – 275.en_US
dc.identifier.citedreferenceLazar D. F. and Medzihradsky F. ( 1990 ) Differential inhibition of delta opiate binding and low K m GTPase stimulation by phos-pholipase A 2 treatment. Prog. Clin. Biol. Res. 328, 113 – 116.en_US
dc.identifier.citedreferenceLin H.-K. and Simon E. J. ( 1978 ) Phospholipase A inhibition of opiate receptor binding can be reversed by albumin. Nature 271, 383 – 384.en_US
dc.identifier.citedreferenceLowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 – 275.en_US
dc.identifier.citedreferenceMcGee, R. and Kenimer J. G. ( 1982 ) The effects of exposure to unsaturated fatty acids on opiate receptors, prostaglandin E 1 receptors, and adenylate cyclase activity of neuroblastoma × glioma hybrid cells. Mol. Pharmacol. 22, 360 – 368.en_US
dc.identifier.citedreferenceMcOsker C. C., Weiland G. A., and Zilversmit D. B. ( 1983 ) Inhibition of hormone-stimulated adenylate cyclase activity after altering turkey erythrocyte phospholipid composition with a nonspecific lipid transfer protein. J. Biol. Chem. 258, 13017 – 13026.en_US
dc.identifier.citedreferenceMcPhail L. C., Clayton C. C., and Snyderman R. ( 1984 ) A potential second messenger role for unsaturated fatty acids: activation of Ca 2+ -dependent protein kinase. Science 224, 622 – 625.en_US
dc.identifier.citedreferenceMedzihradsky F. ( 1989 ) Modulation of opioid receptor mechanisms by membrane lipids: an investigative approach. Adv. Biosci. 75, 41 – 44.en_US
dc.identifier.citedreferenceMorrison W. R. and Smith L. M. ( 1964 ) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5, 600 – 608.en_US
dc.identifier.citedreferenceOrdway R. W., Walsh J. V., and Singer J. J. ( 1989 ) Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science 244, 1176 – 1179.en_US
dc.identifier.citedreferenceOrly J. and Schramm M. ( 1975 ) Fatty acids as modulators of membrane function: catecholamine activated adenylate cyclase of the turkey erythrocyte. Proc. Natl. Acad. Sci. USA 72, 3433 – 3437.en_US
dc.identifier.citedreferenceOrtiz A. and Gomez-Fernandez J. C. ( 1987 ) A differential scanning calorimetry study of the interaction of free fatty acids with phospholipid membranes. Chem. Phys. Lipids 45, 75 – 91.en_US
dc.identifier.citedreferenceRadin N. ( 1969 ) Preparation of lipid extracts, in Methods in Enzymology. Vol. XIV ( Lowenstein J., ed. ), pp. 245 – 254. Academic Press, New York.en_US
dc.identifier.citedreferenceRemmers A. E. and Medzihradsky F. ( 1987 ) Modulation of ligand binding to opioid receptors by membrane lipids. Abstracts, International Narcotics Research Conference, Adelaide, Australia.en_US
dc.identifier.citedreferenceRimon G., Hanski E., Braun S., and Levitzki A. ( 1978 ) Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity. Nature 276, 394 – 396.en_US
dc.identifier.citedreferenceSargent D. F. and Schwyzer R. ( 1986 ) Membrane lipid phase as catalyst for peptide-receptor interactions. Proc. Natl. Acad. Sci. USA 83, 5774 – 5778.en_US
dc.identifier.citedreferenceSargent D. F., Bean J. W., and Schwyzer R. ( 1988 ) Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection. Biophys. Chem. 31, 183 – 193.en_US
dc.identifier.citedreferenceSchiller P. W., Nguyen T. M.-D., Chung N. N., and Lemieux C. ( 1989 ) Dermorphin analogues carrying an increased positive net charge in their “message” domain display extremely high Μ opioid receptor selectivity. J. Med. Chem. 32, 698 – 703.en_US
dc.identifier.citedreferenceSchwyzer R. ( 1986 ) Molecular mechanism of opioid receptor selection. Biochemistry 25, 6335 – 6342.en_US
dc.identifier.citedreferenceSeifert R., Schachtele C., Rosenthal W., and Schultz G. ( 1988 ) Activation of protein kinase C by cis- and trans-fatty acids and its potentiation by diacylglycerol. Biochem. Biophys. Res. Commun. 154, 20 – 26.en_US
dc.identifier.citedreferenceShinitzky M. ( 1984 ) Physiology of Membrane Fluidity, Vol. I, CRC Press, Inc., Boca Raton, Honda.en_US
dc.identifier.citedreferenceShinitzky M. and Barenholz Y. ( 1978 ) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515, 367 – 394.en_US
dc.identifier.citedreferenceStubbs C. D. and Smith A. D. ( 1984 ) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779, 89 – 137.en_US
dc.identifier.citedreferenceWerling L. L., Puttfarcken P. S., and Cox B. M. ( 1988 ) Multiple agonist-affinity states of opioid receptors: regulation of binding by guanyl nucleotides in guinea pig cortical, NG108–15, and 7314c cell membranes. Mol. Pharmacol. 33, 423 – 451.en_US
dc.identifier.citedreferenceWilkinson L. ( 1988 ) SYSTAT: The System for Statistics. SYSTAT Inc., Evanston, Illinois.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.