Show simple item record

Multiple functional domains are involved in tomosyn regulation of exocytosis

dc.contributor.authorYizhar, Oferen_US
dc.contributor.authorLipstein, Noaen_US
dc.contributor.authorGladycheva, Svetlana E.en_US
dc.contributor.authorMatti, Ulfen_US
dc.contributor.authorErnst, Stephen A.en_US
dc.contributor.authorRettig, Jensen_US
dc.contributor.authorStuenkel, Edward L.en_US
dc.contributor.authorAshery, Urien_US
dc.date.accessioned2010-04-01T15:38:57Z
dc.date.available2010-04-01T15:38:57Z
dc.date.issued2007-10en_US
dc.identifier.citationYizhar, Ofer; Lipstein, Noa; Gladycheva, Svetlana E.; Matti, Ulf; Ernst, Stephen A.; Rettig, Jens; Stuenkel, Edward L.; Ashery, Uri (2007). "Multiple functional domains are involved in tomosyn regulation of exocytosis." Journal of Neurochemistry 103(2): 604-616. <http://hdl.handle.net/2027.42/66137>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66137
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17666050&dopt=citationen_US
dc.format.extent640160 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2007 International Society for Neurochemistryen_US
dc.subject.otherChromaffin Cellsen_US
dc.subject.otherExocytosisen_US
dc.subject.otherPrimingen_US
dc.subject.otherSyntaxinen_US
dc.subject.otherTomosynen_US
dc.subject.otherWD40-repeatsen_US
dc.titleMultiple functional domains are involved in tomosyn regulation of exocytosisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum§ Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Department of Neurobiochemistry, Life Sciences Institute, Tel Aviv University, Tel Aviv, Israelen_US
dc.contributor.affiliationother† Physiologisches Institut, UniversitÄt des Saarlandes, Homburg/Saar, Germanyen_US
dc.identifier.pmid17666050en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66137/1/j.1471-4159.2007.04791.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2007.04791.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAshery U., Betz A., Xu T., Brose N. and Rettig J. ( 1999 ) An efficient method for infection of adrenal chromaffin cells using the Semliki forest virus gene expression system. Eur. J. Cell Biol. 78, 525 – 532.en_US
dc.identifier.citedreferenceAshery U., Varoqueaux F., Voets T., Betz A., Thakur P., Koch H., Neher E., Brose N. and Rettig J. ( 2000 ) Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J. 19, 3586 – 3596.en_US
dc.identifier.citedreferenceAugustine G. J., Burns M. E., DeBello W. M., Hilfiker S., Morgan J. R., Schweizer F. E., Tokumaru H. and Umayahara K. ( 1999 ) Proteins involved in synaptic vesicle trafficking. J. Physiol. 520, 33 – 41.en_US
dc.identifier.citedreferenceBaba T., Sakisaka T., Mochida S. and Takai Y. ( 2005 ) PKA-catalyzed phosphorylation of tomosyn and its implication in Ca 2+ -dependent exocytosis of neurotransmitter. J. Cell Biol. 170, 1113 – 1125.en_US
dc.identifier.citedreferenceBecherer U. and Rettig J. ( 2006 ) Vesicle pools, docking, priming, and release. Cell Tissue Res. 326, 393 – 407.en_US
dc.identifier.citedreferenceBetschinger J., Eisenhaber F. and Knoblich J. A. ( 2005 ) Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Curr. Biol. 15, 276 – 282.en_US
dc.identifier.citedreferenceCalakos N. and Scheller R. H. ( 1996 ) Synaptic vesicle biogenesis, docking, and fusion: a molecular description. Physiol. Rev. 76, 1 – 29.en_US
dc.identifier.citedreferenceCastillo P. E., Schoch S., Schmitz F., Sudhof T. C. and Malenka R. C. ( 2002 ) RIM1alpha is required for presynaptic long-term potentiation. Nature 415, 327 – 330.en_US
dc.identifier.citedreferenceCheviet S., Bezzi P., Ivarsson R., Renstrom E., Viertl D., Kasas S., Catsicas S. and Regazzi R. ( 2006 ) Tomosyn-1 is involved in a post-docking event required for pancreatic {beta}-cell exocytosis. J. Cell Sci. 119, 2912 – 2920.en_US
dc.identifier.citedreferenceConstable J. R., Graham M. E., Morgan A. and Burgoyne R. D. ( 2005 ) Amisyn regulates exocytosis and fusion pore stability by both syntaxin-dependent and syntaxin-independent mechanisms. J. Biol. Chem. 280, 31615 – 31623.en_US
dc.identifier.citedreferenceDybbs M., Ngai J. and Kaplan J. M. ( 2005 ) Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion. J. Physiology 1, 6 – 16.en_US
dc.identifier.citedreferenceFasshauer D., Eliason W. K., Brunger A. T. and Jahn R. ( 1998 ) Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354 – 10362.en_US
dc.identifier.citedreferenceFernandez-Chacon R. and Sudhof T. C. ( 1999 ) Genetics of synaptic vesicle function: toward the complete functional anatomy of an organelle. Annu. Rev. Physiol. 61, 753 – 776.en_US
dc.identifier.citedreferenceFujita Y., Shirataki H., Sakisaka T. et al. ( 1998 ) Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20, 905 – 915.en_US
dc.identifier.citedreferenceGerst J. E. ( 1999 ) SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol. Life Sci. 55, 707 – 734.en_US
dc.identifier.citedreferenceGracheva E. O., Burdina A. O., Holgado A. M., Berthelot-Grosjean M., Ackley B. D., Hadwiger G., Nonet M. L., Weimer R. M. and Richmond J. E. ( 2006 ) Tomosyn Inhibits Synaptic Vesicle Priming in Caenorhabditis elegans. PLos Biol. 4, 1426 – 1437.en_US
dc.identifier.citedreferenceGroffen A. J., Jacobsen L., Schut D. and Verhage M. ( 2005 ) Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain. J. Neurochem. 92, 554 – 568.en_US
dc.identifier.citedreferenceHanson P. I., Roth R., Morisaki H., Jahn R. and Heuser J. E. ( 1997 ) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523 – 535.en_US
dc.identifier.citedreferenceHatsuzawa K., Lang T., Fasshauer D., Bruns D. and Jahn R. ( 2003 ) The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J. Biol. Chem. 278, 31159 – 31166.en_US
dc.identifier.citedreferenceHattendorf D. A., Andreeva A., Gangar A., Brennwald P. J. and Weis W. I. ( 2007 ) Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism. Nature 446, 567 – 571.en_US
dc.identifier.citedreferenceHenkel A. W. and Almers W. ( 1996 ) Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr. Opin. Neurobiol. 6, 350 – 357.en_US
dc.identifier.citedreferenceJahn R. and Sudhof T. C. ( 1999 ) Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863 – 911.en_US
dc.identifier.citedreferenceLehman K., Rossi G., Adamo J. E. and Brennwald P. ( 1999 ) Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J. Cell Biol. 146, 125 – 140.en_US
dc.identifier.citedreferenceLonart G. ( 2002 ) RIM1: an edge for presynaptic plasticity. Trends Neurosci. 25, 329 – 332.en_US
dc.identifier.citedreferenceLonart G. and Sudhof T. C. ( 2000 ) Assembly of snare core complexes occurs prior to neurotransmitter release to set the readily-releasable pool of synaptic vesicles. J. Biol. Chem. 275, 27703 – 27707.en_US
dc.identifier.citedreferenceMasuda E. S., Huang B. C., Fisher J. M., Luo Y. and Scheller R. H. ( 1998 ) Tomosyn binds t-SNARE proteins via a VAMP-like coiled coil. Neuron 21, 479 – 480.en_US
dc.identifier.citedreferenceMcEwen J. M., Madison J. M., Dybbs M. and Kaplan J. M. ( 2006 ) Antagonistic Regulation of Synaptic Vesicle Priming by Tomosyn and UNC-13. Neuron 51, 303 – 315.en_US
dc.identifier.citedreferenceMusch A., Cohen D., Yeaman C., Nelson W. J., Rodriguez-Boulan E. and Brennwald P. J. ( 2002 ) Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell 13, 158 – 168.en_US
dc.identifier.citedreferenceNeer E. J., Schmidt C. J., Nambudripad R. and Smith T. F. ( 1994 ) The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297 – 300.en_US
dc.identifier.citedreferenceNeher E. ( 1998 ) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389 – 399.en_US
dc.identifier.citedreferenceNili U., de Wit H., Gulyas-Kovacs A., Toonen R. F., Sorensen J. B., Verhage M. and Ashery U. ( 2006 ) Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells. Neuroscience 143, 487 – 500.en_US
dc.identifier.citedreferencePlattner H., Artalejo A. R. and Neher E. ( 1997 ) Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J. Cell Biol. 139, 1709 – 1717.en_US
dc.identifier.citedreferencePobbati A. V., Razeto A., Boddener M., Becker S. and Fasshauer D. ( 2004 ) Structural basis for the inhibitory role of tomosyn in exocytosis. J. Biol. Chem. 279, 47192 – 47200.en_US
dc.identifier.citedreferenceReid C. A., Dixon D. B., Takahashi M., Bliss T. V. and Fine A. ( 2004 ) Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses. J. Neurosci. 24, 3618 – 3626.en_US
dc.identifier.citedreferenceRettig J. and Neher E. ( 2002 ) Emerging roles of presynaptic proteins in Ca ++ -triggered exocytosis. Science 298, 781 – 785.en_US
dc.identifier.citedreferenceRichmond J. and Broadie K. ( 2002 ) The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans. Curr. Opin. Neurobiol. 12, 499.en_US
dc.identifier.citedreferenceRosenmund C., Sigler A., Augustin I., Reim K., Brose N. and Rhee J. S. ( 2002 ) Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33, 411 – 424.en_US
dc.identifier.citedreferenceSakisaka T., Baba T., Tanaka S., Izumi G., Yasumi M. and Takai Y. ( 2004 ) Regulation of SNAREs by tomosyn and ROCK: implication in extension and retraction of neurites. J. Cell Biol. 166, 17 – 25.en_US
dc.identifier.citedreferenceScales S. J., Hesser B. A., Masuda E. S. and Scheller R. H. ( 2002 ) Amisyn, a novel syntaxin-binding protein that may regulate SNARE complex assembly. J. Biol. Chem. 277, 28271 – 2829.en_US
dc.identifier.citedreferenceSchuette C. G., Hatsuzawa K., Margittai M., Stein A., Riedel D., Kuster P., Konig M., Seidel C. and Jahn R. ( 2004 ) Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc. Natl Acad. Sci. USA 101, 2858 – 2863.en_US
dc.identifier.citedreferenceSmith T. F., Gaitatzes C., Saxena K. and Neer E. J. ( 1999 ) The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181 – 185.en_US
dc.identifier.citedreferenceSØrensen J. B., Matti U., Wei S. H., Nehring R. B., Voets T., Ashery U., Binz T., Neher E. and Rettig J. ( 2002 ) The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci USA. 99, 1627 – 132.en_US
dc.identifier.citedreferenceSØrensen J. B., Nagy G., Varoqueaux F., Nehring R. B., Brose N., Wilson M. C. and Neher E. ( 2003 ) Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114, 75 – 86.en_US
dc.identifier.citedreferenceSudhof T. C. ( 2004 ) The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509 – 547.en_US
dc.identifier.citedreferenceSutton R. B., Fasshauer D., Jahn R. and Brunger A. T. ( 1998 ) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347 – 353.en_US
dc.identifier.citedreferenceVoets T., Neher E. and Moser T. ( 1999 ) Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron 23, 607 – 615.en_US
dc.identifier.citedreferenceWeber T., Zemelman B. V., McNew J. A., Westermann B., Gmachl M., Parlati F., Sollner T. H. and Rothman J. E. ( 1998 ) SNAREpins: minimal machinery for membrane fusion. Cell 92, 759 – 772.en_US
dc.identifier.citedreferenceWeis W. I. and Scheller R. H. ( 1998 ) Membrane fusion. SNARE the rod, coil the complex. Nature 395, 328 – 329.en_US
dc.identifier.citedreferenceWidberg C. H., Bryant N. J., Girotti M., Rea S. and James D. E. ( 2003 ) Tomosyn interacts with the t-SNAREs syntaxin4 and SNAP23 and plays a role in insulin-stimulated GLUT4 translocation. J. Biol. Chem. 278, 35093 – 35101.en_US
dc.identifier.citedreferenceXu T. and Bajjalieh S. M. ( 2001 ) SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat. Cell Biol. 3, 691 – 68.en_US
dc.identifier.citedreferenceXu T., Binz T., Niemann H. and Neher E. ( 1998 ) Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat. Neurosci. 1, 192 – 200.en_US
dc.identifier.citedreferenceXu T., Rammner B., Margittai M., Artalejo A. R., Neher E. and Jahn R. ( 1999 ) Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713 – 722.en_US
dc.identifier.citedreferenceYizhar O., Matti U., Melamed R., Hagalili Y., Bruns D., Rettig J. and Ashery U. ( 2004 ) Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proc. Natl Acad. Sci. USA 101, 2578 – 2583.en_US
dc.identifier.citedreferenceYokoyama S., Shirataki H., Sakisaka T. and Takai Y. ( 1999 ) Three splicing variants of tomosyn and identification of their syntaxin- binding region. Biochem. Biophys. Res. Commun. 256, 218 – 222.en_US
dc.identifier.citedreferenceZhang W., Lilja L., Mandic S. A., Gromada J., Smidt K., Janson J., Takai Y., Bark C., Berggren P. O. and Meister B. ( 2006 ) Tomosyn is expressed in beta-cells and negatively regulates insulin exocytosis. Diabetes 55, 574 – 581.en_US
dc.identifier.citedreferenceZucker R. S. and Regehr W. G. ( 2002 ) Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355 – 405.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.