Show simple item record

Glutamate Decarboxylases in Nonneural Cells of Rat Testis and Oviduct: Differential Expression of GAD 65 and GAD 67

dc.contributor.authorTillakaratne, Niranjala J. K.en_US
dc.contributor.authorErlander, Mark G.en_US
dc.contributor.authorCollard, Michael W.en_US
dc.contributor.authorGreif, Karen F.en_US
dc.contributor.authorTobin, Allan J.en_US
dc.date.accessioned2010-04-01T15:43:15Z
dc.date.available2010-04-01T15:43:15Z
dc.date.issued1992-02en_US
dc.identifier.citationTillakaratne, Niranjala J. K.; Erlander, Mark G.; Collard, Michael W.; Greif, Karen F.; Tobin, Allan J. (1992). "Glutamate Decarboxylases in Nonneural Cells of Rat Testis and Oviduct: Differential Expression of GAD 65 and GAD 67 ." Journal of Neurochemistry 58(2): 618-627. <http://hdl.handle.net/2027.42/66211>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66211
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1729406&dopt=citationen_US
dc.description.abstractΓ-Aminobutyric acid (GABA) and its synthetic enzyme, glutamate decarboxylase (GAD), are not limited to the nervous system but are also found in nonneural tissues. The mammalian brain contains at least two forms of GAD (GAD 67 and GAD 65 ), which differ from each other in size, sequence, immunoreactivity, and their interaction with the cofactor pyridoxal 5′-phosphate (PLP). We used cDNAs and antibodies specific to GAD 65 and GAD 67 to study the molecular identity of GADs in peripheral tissues. We detected GAD and GAD mRNAs in rat oviduct and testis. In oviduct, the size of GAD, its response to PLP, its immunoreactivity, and its hybridization to specific RNA and DNA probes all indicate the specific expression of the GAD 65 gene. In contrast, rat testis expresses the GAD 67 gene. The GAD in these two reproductive tissues is not in neurons but in nonneural cells. The localization of brain GAD and GAD mRNAs in the mucosal epithelial cells of the oviduct and in spermatocytes and spermatids of the testis shows that GAD is not limited to neurons and that GABA may have functions other than neurotransmission.en_US
dc.format.extent2180901 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1992 International Society for Neurochemistryen_US
dc.subject.otherGlutamate Decarboxylaseen_US
dc.subject.otherΓ-Aminobutyric Aciden_US
dc.subject.otherOviducten_US
dc.subject.otherTestisen_US
dc.subject.otherMRNAsen_US
dc.titleGlutamate Decarboxylases in Nonneural Cells of Rat Testis and Oviduct: Differential Expression of GAD 65 and GAD 67en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Mental Health Research Institute, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationother* Department of Biology, University of California, Los Angeles, Los Angeles, Californiaen_US
dc.contributor.affiliationother† Neuroscience Program, University of California, Los Angeles, Los Angeles, Californiaen_US
dc.contributor.affiliationotherMolecular Biology Institute, University of California, Los Angeles, Los Angeles, Californiaen_US
dc.contributor.affiliationother¶ Brain Research Institute, University of California, Los Angeles, Los Angeles, Californiaen_US
dc.contributor.affiliationother§ Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, U.S.A.en_US
dc.identifier.pmid1729406en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66211/1/j.1471-4159.1992.tb09763.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1992.tb09763.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceApud J. A., Tappaz M. L., Celotti F., Negri-Cesi P., Masotto C., and Racagni G. ( 1984 ) Biochemical and immunochemical studies on the GABAergic system in the rat fallopian tube and ovary. J. Neurochem. 43, 120 – 125.en_US
dc.identifier.citedreferenceBaekkeskov S., Aanstoot H., Christgaus S., Reetz A., Solimena M., Cascalho M., Folli F., Richter-Oleson H., and DeCamilli P. ( 1990 ) Identification of the 64K auto-antigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347, 151 – 156.en_US
dc.identifier.citedreferenceBoisvieux-Ulrich E., Laine M.-C., and Sandoz D. ( 1987 ) In vitro effects of benzodiazapines on ciliogenesis in the quail oviduct. Cell Motil. Cytoskeleton 8, 333 – 344.en_US
dc.identifier.citedreferenceBradford M. M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceCelloti F., Apud J. A., Rovescalli A. C., Melcangi R. C., Negri-Cesi P., and Racagni G. ( 1986 ) The GABAergic extrinsic innervation of the rat fallopian tubes: biochemical evidence and endocrine modulation, in Advances in Biochemical Psychopharmacology, Vol. 42: GABA and Endocrine Function ( Racagni G., and Donoso A. O., eds ), pp. 251 – 264. Raven Press, New York.en_US
dc.identifier.citedreferenceCelloti F., Apud J. A., Rovescalli A. C., Negri-Cesi P., and Racagni G. ( 1987 ) Possible involvement of ovarian mechanisms other than estrogen-progesterone secretion in the regulation of glutamic acid decarboxylase activity of the rat fallopian tubes. Endocrinology 120, 700 – 706.en_US
dc.identifier.citedreferenceChang Y.-C. and Gottlieb D. I. ( 1988 ) Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase. J. Neurosci. 8, 2123 – 2130.en_US
dc.identifier.citedreferenceChen C. C., Mather J. P., Morris P. L., and Bardin C. W. ( 1984 ) Expression of pro-opiomelanocortin-like gene in the testis and epididymis. Proc. Natl. Acad. Sci. USA 81, 5672 – 5675.en_US
dc.identifier.citedreferenceChirgwin J. M., Przybyla A. E., MacDonald R. J., and Rutter W. J. ( 1979 ) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294 – 5299.en_US
dc.identifier.citedreferenceChurch G. M. and Gilbert W. ( 1984 ) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991 – 1995.en_US
dc.identifier.citedreferenceCohn D. F., Homonnai Z. T., and Paz G. F. ( 1982 ) The effect of anticonvulsant drugs on the development of male rats and their fertility. J. Neurol. Neurosurg. Psychiatry 45, 844 – 846.en_US
dc.identifier.citedreferenceCollard M. W., Day R., Akil H., Uhler M. D., and Douglass J. O. ( 1990 ) Sertoli cells are the primary site of prodynorphin gene expression in rat testis: regulation of mRNA synthesis and peptide secretion by cAMP analogs in cultured cells. Mol. Endocrinol. 4, 1488 – 1496.en_US
dc.identifier.citedreferenceDel Rio R. M. ( 1981 ) Γ-Aminobutyric acid system in rat oviduct. J. Biol. Chem. 256, 9816 – 9819.en_US
dc.identifier.citedreferenceDenner L. A. and Wu J.-Y. ( 1985 ) Two forms of rat brain glutamic acid decarboxylase differ in their dependence on free pyridoxal phosphate. J. Neurochem. 44, 957 – 965.en_US
dc.identifier.citedreferenceDenner L. A., Wei S. C., Lin H. S., Lin C.-T., and Wu J-Y. ( 1987 ) Brain l-glutamate decarboxylase: purification and subunit structure. Proc. Natl. Acad. Sci. USA 84, 668 – 672.en_US
dc.identifier.citedreferenceDorrington J. H. and Fritz I. B. ( 1975 ) Cellular localization of 5-alpha-reductase and 3-alpha-hydroxysteroid dehydrogenase in the seminiferous tubule of the rat testis. Endocrinology 96, 879 – 889.en_US
dc.identifier.citedreferenceDuvilanski B. H., del Carmen Diaz M. C., Lasaga M., and Seilicovich A. ( 1985 ) l-Glutamate decarboxylase activity in the ovary and fallopian tube during the estrous cycle. IRCS Med. Sci. (Biochem.) 13, 81.en_US
dc.identifier.citedreferenceErdÖ S. L. ( 1984 ) Alteration of GABA levels in ovary and fallopian tube of the pregnant rat. Life Sci. 34, 1879 – 1884.en_US
dc.identifier.citedreferenceErdÖ S. L. and Amenta F. ( 1986 ) Characterization and localization of high-affinity GABA uptake in rabbit oviduct. Eur. J. Pharmacol. 130, 287 – 294.en_US
dc.identifier.citedreferenceErdÖ S. L. and Kiss B. ( 1986 ) Presence of GABA, glutamate decarboxylase, and GABA transaminase in peripheral tissues: a collection of quantitative data, in GABAergic Mechanisms in the Mammalian Periphery ( ErdÖ S. L. and Bowery N. G., eds ), pp. 5 – 17. Raven Press, New York.en_US
dc.identifier.citedreferenceErdÖ S. L. and Wekerle L. ( 1990 ) GABA A type binding sites on membranes of spermatozoa. Life Sci. 47, 1147 – 1151.en_US
dc.identifier.citedreferenceErdÖ S. L. and Wolff J. R. ( 1990 ) Γ-Aminobutyric acid outside the mammalian brain. J. Neurochem. 54, 363 – 372.en_US
dc.identifier.citedreferenceErdÖ S. L., Kiss B., and Szporny L. ( 1984 ) Comparative characterization of glutamate decarboxylase in crude homogenates of oviduct, ovary, and hypothalamus. J. Neurochem. 43, 1532 – 1537.en_US
dc.identifier.citedreferenceErdÖ S. L., Somogyi J., Hamori J., and Amenta F. ( 1986 ) Light- and electron-microscopic visualization of gamma-aminobutyric acid and GABA-trans-aminase in the oviduct of rats. Predominant occurrence in epithelium. Cell Tissue Res. 244, 621 – 624.en_US
dc.identifier.citedreferenceErdÖ S. L., JoÓ F., and Wolff J. R. ( 1989 ) Immunohistochemical localization of glutamate decarboxylase in the rat oviduct and ovary: further evidence for non-neural GABA systems. Cell Tissue Res. 255, 431 – 434.en_US
dc.identifier.citedreferenceErlander M. G. and Tobin A. J. ( 1991 ) The structural and functional heterogeneity of glutamate decarboxylase: a review. Neurochem. Res. 16, 215 – 226.en_US
dc.identifier.citedreferenceErlander M. G., Tillakaratne N. J. K., Feldblum S., Patel N., and Tobin A. J. ( 1991 ) Two genes encode distinct glutamate decarboxylases with different responses to pyridoxal phosphate. Neuron 7, 91 – 100.en_US
dc.identifier.citedreferenceFeinberg A. P. and Vogelstein B. ( 1984 ) Addendum: a technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266 – 267.en_US
dc.identifier.citedreferenceFernandez I., Martin del Rio R., and Orensanz L. M. ( 1985 ) Surgical ablation of oviductal extrinsic innervation changes GABA levels in the rat Fallopian tube. Life Sci. 36, 1733 – 1737.en_US
dc.identifier.citedreferenceFernandez-Pardal J., Gimeno M. F., and Gimeno A. L. ( 1984 ) The presence of GABA in ovarian, tubal and uterine rat tissue and the influence of estrogens. IRCS Med. Sci. (Biochem.) 12, 706.en_US
dc.identifier.citedreferenceGoodyer P. R., Lancaster G., Villeneure M., and Scriver C. R. ( 1980 ) The relationship of 4-aminobutyric acid metabolism to ammoniagenesis in renal cortex. Biochim. Biophys. Acta 633, 191 – 200.en_US
dc.identifier.citedreferenceGoodyer P. R., Mills M., and Scriver C. R. ( 1982 ) Properties of gamma-aminobutyric acid synthesis by rat renal cortex. Biochim. Biophys. Acta 716, 348 – 357.en_US
dc.identifier.citedreferenceHuang W.-M., Reed-Fourguet L., Wu E., and Wu J.-Y. ( 1990 ) Molecular cloning and amino acid sequence of brain l-glutamate decarboxylase. Proc. Natl. Acad. Sci. USA 87, 8491 – 8495.en_US
dc.identifier.citedreferenceJessen K. R., Mirsky R., Dennison M. E., and Burnstock G. ( 1979 ) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281, 71 – 74.en_US
dc.identifier.citedreferenceKarkun J. V. ( 1979 ) Recent advances on the endocrinology of the mammalian oviduct, in Recent Advances in Reproduction and Regulation of Fertility ( Talwar G. P., ed ), pp. 189 – 199. Elsevier/North Holland Biomedical Press, Amsterdam.en_US
dc.identifier.citedreferenceKataoka Y., Gutman Y., Guidotti A., Panula P., Wroblewski J., Cosenza-Murphy D., Wu J. Y., and Costa E. ( 1984 ) Instrinsic GABAergic system of adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 81, 3218 – 3222.en_US
dc.identifier.citedreferenceKaufman D. L., McGinnis J. F., Krieger N. R., and Tobin A. J. ( 1986 ) Brain glutamate decarboxylase cloned in Λ-gt-11: fusion protein produces Γ-aminobutyric acid. Science 232, 1138 – 1140.en_US
dc.identifier.citedreferenceKaufman D. L., Houser C. R., and Tobin A. J. ( 1991 ) Two forms of the GABA synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 56, 720 – 723.en_US
dc.identifier.citedreferenceKhrestchatisky M., MacLennan A. J., Tillakaratne N. J. K., Chiang M.-Y, and Tobin A. J. ( 1991 ) Sequence and regional distribution of the mRNA encoding the Α2 polypeptide of rat Γ-aminobutyric acid A receptors. J. Neurochem. 56, 1717 – 1722.en_US
dc.identifier.citedreferenceKilpatrick D. L. and Borland K. ( 1987 ) Differential expression of two distinct forms of proenkephalin mRNA during development of the mouse testis. Ann. N. Y. Acad. Sci. 15, 315 – 317.en_US
dc.identifier.citedreferenceKilpatrick D. L., Howells R. D., Noe M., Bailey C. L., and Udenfriend S. ( 1985 ) Expression of preproenkephalin-like mRNA and its peptide products in mammalian testis and ovary. Proc. Natl. Acad. Sci. USA 82, 7467 – 7469.en_US
dc.identifier.citedreferenceKobayashi Y., Kaufman D. L., and Tobin A. J. ( 1987 ) Glutamic acid decarboxylase cDNA: nucleotide sequence encoding an enzymatically active protein. J. Neurosci. 7, 2768 – 2772.en_US
dc.identifier.citedreferenceKrieger N. R. and Heller J. S. ( 1984 ) Localization of GAD within laminae of rat olfactory tubercle. J. Neurochem. 33, 299 – 309.en_US
dc.identifier.citedreferenceLegay F., Henry S., and Tappaz M. ( 1987 ) Evidence for two distinct forms of native glutamic acid decarboxylase in rat brain soluble extract: an immunoblotting study. J. Neurochem. 48, 1022 – 1026.en_US
dc.identifier.citedreferenceLouzan P., Gallardo M. G. P., and Tramezzani J. H. ( 1986 ) Changes of GABA content in the female rat genital tract, in GABA and Endocrine Function ( Racagni G. and Donoso A. O., eds ), pp. 283 – 290. Raven Press, New York.en_US
dc.identifier.citedreferenceManiatis T., Fritsch E. F., and Sambrook J. ( 1982 ) Molecular Cloning. A Laboratory Manual, p. 202. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.en_US
dc.identifier.citedreferenceMartin D. L. ( 1987 ) Regulatory properties of brain glutamate decarboxylase. Cell. Mol. Neurobiol. 7, 237 – 253.en_US
dc.identifier.citedreferenceMeistrish M. L., Bruce W. R., and Clermont Y. ( 1973 ) Cellular composition of mouse testis cells following velocity sedimentation separation. Exp. Cell Res. 79, 213 – 227.en_US
dc.identifier.citedreferenceMinuk G. Y. ( 1986 ) GABAergic mechanisms and their functional importance in the liver, in GABAergic Mechanisms in the Mammalian Periphery ( ErdÖ S. L. and Bowery N. G., eds ), pp. 325 – 337. Raven Press, New York.en_US
dc.identifier.citedreferenceMorales C., Hugly S., and Griswold M. D. ( 1987 ) Stage-dependent levels of specific mRNA transcripts in Sertoli cells. Biol. Reprod. 36, 1035 – 1046.en_US
dc.identifier.citedreferenceMurashima Y. L. and Kato T. ( 1986 ) Distribution of Γ-aminobutyric acid and glutamate decarboxylase in the layers of rat oviduct. J. Neurochem. 46, 166 – 172.en_US
dc.identifier.citedreferenceOertel W. H., Schmechel D. E., Weise V. K., Ransom D. H., Tappaz M. L., Krutzch H. C., and Kopin I. J. ( 1981a ) Comparison of cysteine sulphinic acid decarboxylase isozymes and glutamic acid decarboxylase in rat liver and brain. Neuroscience 6, 2701 – 2714.en_US
dc.identifier.citedreferenceOertel W. H., Schmechel D. E., Tappaz M. L., and Kopin I. J. ( 1981b ) Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-antibody complex. Neuroscience 6, 2689 – 2700.en_US
dc.identifier.citedreferencePersson H., Delto-Huikko M., Metsis M., SÖder O., Stefan B., Skog S., HÖkfelt T., and RitzÉn E. M. ( 1990 ) Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells. Mol. Cell. Biol. 10, 4701 – 4711.en_US
dc.identifier.citedreferencePintar J. E., Schachter B. S., Herman A. B., Durgerian S., and Krieger D. T. ( 1984 ) Characterization and localization of proopiomelanocortin messenger RNA in the adult testis. Science 225, 632 – 634.en_US
dc.identifier.citedreferenceRedburn D. A. and Schousboe A., eds ( 1987 ) Neurotrophic Activity of GABA During Development. Alan R. Liss, New York.en_US
dc.identifier.citedreferenceRitta M. N., Campos M. B., and Calandra R. S. ( 1987 ) Effect of GABA and benzodiazepines on testicular androgen production. Life Sci. 40, 791 – 798.en_US
dc.identifier.citedreferenceRitta M. N., Campos M. S., and Calandra R. S. ( 1991 ) Coexistence of Γ-aminobutyric Acid type A and type B receptors in testicular interstitial cells. J. Neurochem. 56, 1236 – 1240.en_US
dc.identifier.citedreferenceRorsman P., Berggre P.-O., Bokvist K., Ericson H., Mohler H., Ostenson C.-G., and Smith P. A. ( 1989 ) Glucose-inhibition of glucagon secretion involves activation of GABA A receptor chloride channels. Nature 341, 233 – 236.en_US
dc.identifier.citedreferenceRussell L. D., Alger L. E., and Neguin L. G. ( 1987 ) Hormonal control of pubertal spermatogenesis. Endocrinology 120, 1615 – 1632.en_US
dc.identifier.citedreferenceSegovia J., Tillakaratne N. J. K., Whelan K., Tobin A. J., and Gale K. ( 1990 ) Parallel increases in striatal glutamic acid decarboxylase activity and mRNA levels in rats with lesions of the nigrostriatal pathway. Brain Res. 529, 345 – 348.en_US
dc.identifier.citedreferenceSpink D. C., Porter T. G., Wu S. J., and Martin D. L. ( 1985 ) Characterization of three kinetically distinct forms of glutamate decarboxylase from pig brain. Biochem. J. 231, 695 – 703.en_US
dc.identifier.citedreferenceTillakaratne N. J. K. and Tobin A. J. ( 1986 ) Glutamic acid decarboxylase (GAD) messenger RNA in brain and peripheral tissues of rat. (Abstr) Soc. Neurosci. Abstr. 12, 1458.en_US
dc.identifier.citedreferenceTobin A. J. ( 1989 ) Structure and regulation of the gene for the glutamate decarboxylase: a candidate gene for neuropsychiatric and neurological disease, in Molecular Neurobiology, Proceedings of the First NIMH Conference ( Zalcman S. and Scheller R., eds ), pp. 165 – 182. U.S. Department of Health and Human Services, Rockville, Maryland.en_US
dc.identifier.citedreferenceVincent S. R., HÖkfelt T., Wu J.-Y., Elde R. P., Morgan L. M., and Kimmel J. R. ( 1983 ) Immunohistochemical studies of the GABA system in the pancreas. Neuroendocrinology 36, 197 – 204.en_US
dc.identifier.citedreferenceWhelan D. T., Scriver C. R., and Mohyuddin F. ( 1969 ) Glutamic acid decarboxylases and gamma-aminobutyric acid in mammalian kidney. Nature 224, 916 – 917.en_US
dc.identifier.citedreferenceWood T. L., Frantz G. D., Menkes J. H., and Tobin A. J. ( 1986 ) Regional distribution of messenger RNAs in postmortem human brain. J. Neurosci. Res. 16, 311 – 324.en_US
dc.identifier.citedreferenceWu J.-Y. ( 1977 ) A comparative study of l-glutamate decarboxylase from mouse brain and bovine heart with purified preparations. J. Neurochem. 28, 1359 – 1367.en_US
dc.identifier.citedreferenceWu J.-Y. and Roberts E. ( 1973 ) Comparative studies of l-glutamate decarboxylases from mouse brain and kidney. (Abstr) Am. Soc. Neurochem. 4, 70.en_US
dc.identifier.citedreferenceWu J.-Y., Chude O., Wein J., and Roberts E. ( 1978 ) Glutamate decarboxylase from neural and non-neural tissues. J. Neurochem. 30, 849 – 857.en_US
dc.identifier.citedreferenceWu J.-Y., Denner L. A., Wei S. C., Lin C.-T., Song G.-X., Xu Y. F., Liu J. W., and Lin H. S. ( 1986a ) Production and characterization of polyclonal and monoclonal antibodies to rat brain l-glutamate decarboxylase. Brain Res. 373, 1 – 14.en_US
dc.identifier.citedreferenceWu J.-Y., Lin C.-T., Lin H., Xu Y., Liu J. W., Hwang B. H., and Wei S. C. ( 1986b ) Immunochemical characterization and immunohistochemical localization of glutamate decarboxylase and GABA transaminase in peripheral tissues, in GABAergic Mechanisms in the Mammalian Periphery ( ErdÖ S. L. and Bowery N. G., eds ), pp. 19 – 34. Raven Press, New York.en_US
dc.identifier.citedreferenceWuenschell C. W., Fisher R. S., Kaufman D. L., and Tobin A. J. ( 1986 ) In situ hybridization to localize mRNA encoding the neurotransmitter synthetic enzyme glutamate decarboxylase in mouse cerebellum. Proc. Natl. Acad. Sci. USA 83, 6193 – 6197.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.