Show simple item record

Internal Structure Evaluation of Three-Dimensional Calcium Phosphate Bone Scaffolds: A Micro-Computed Tomographic Study

dc.contributor.authorJongpaiboonkit, Leenapornen_US
dc.contributor.authorHalloran, John W.en_US
dc.contributor.authorHollister, Scott J.en_US
dc.date.accessioned2010-04-01T15:49:23Z
dc.date.available2010-04-01T15:49:23Z
dc.date.issued2006-10en_US
dc.identifier.citationJongpaiboonkit, Leenaporn; Halloran, John W.; Hollister, Scott J. (2006). "Internal Structure Evaluation of Three-Dimensional Calcium Phosphate Bone Scaffolds: A Micro-Computed Tomographic Study." Journal of the American Ceramic Society 89(10): 3176-3181. <http://hdl.handle.net/2027.42/66317>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66317
dc.format.extent1657564 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2006 The American Ceramic Societyen_US
dc.titleInternal Structure Evaluation of Three-Dimensional Calcium Phosphate Bone Scaffolds: A Micro-Computed Tomographic Studyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, Department of Mechanical Engineering, and Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66317/1/j.1551-2916.2006.01143.x.pdf
dc.identifier.doi10.1111/j.1551-2916.2006.01143.xen_US
dc.identifier.sourceJournal of the American Ceramic Societyen_US
dc.identifier.citedreferenceC. P. A. T. Klein, P. Patka, and W. den Hollander, “ Macroporous Calcium Phosphate Bioceramics in Dog Femora : A Histological Study of Interface and Biodegradation,” Biomaterials, 10, 59 – 62 ( 1989 ).en_US
dc.identifier.citedreferenceD. M. Liu, “ Fabrication of Hydroxyapatite Ceramic with Controlled Porosity,” J. Mater. Sci.:Mater. Med., 8, 227 – 32 ( 1997 ).en_US
dc.identifier.citedreferenceD. M. Liu, “ Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic,” Ceram. Int., 23, 135 – 9 ( 1997 ).en_US
dc.identifier.citedreferenceT. M. G. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran, “ Mechanical and In Vivo Performance of Hydroxyapatite Implants with Controlled Architectures,” Biomaterials, 23, 1283 – 93 ( 2002 ).en_US
dc.identifier.citedreferenceS. J. Hollister, R. A. Levy, T. M. Chu, J. W. Halloran, and S. E. Feinberg, “ An Image-Based Approach for Designing and Manufacturing Craniofacial Scaffolds,” Int. J. Oral Maxillofac. Surg., 29, 67 – 71 ( 2002 ).en_US
dc.identifier.citedreferenceS. J. Hollister, R. D. Maddox, and J. M. Taboas, “ Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints,” Biomaterials, 23, 4095 – 103 ( 2002 ).en_US
dc.identifier.citedreferenceJ. M. Taboas, R. D. Maddox, P. H. Krebsbach, and S. J. Hollister, “ Indirect Solid Freeform Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds,” Biomaterials, 24, 181 – 94 ( 2003 ).en_US
dc.identifier.citedreferenceT. M. G. Chu, J. W. Halloran, S. J. Hollister, and S. E. Feinberg, “ Hydroxyapatite Implants with Designed Internal Architecture,” J. Mater. Sci.: Mater. Med., 12, 471 – 8 ( 2001 ).en_US
dc.identifier.citedreferenceC. J. Reilly, W. J. Chappell, J. W. Halloran, and L. P. B. Katehi, “ High-Frequency Electromagnetic Bandgap Structures via Indirect Solid Freeform Fabrication,” J. Am. Ceram. Soc., 87 [8] 1446 – 53 ( 2004 ).en_US
dc.identifier.citedreferenceL. Jongpaiboonkit, T. M. G. Chu, and J. W. Halloran, “ Characterization and Rheology Behavior of DCPD Cement Slips for Casting Complex Scaffold ”; Society for Biomaterials 2003 Annual Meeting, Reno, NV.en_US
dc.identifier.citedreferenceL. Jongpaiboonkit, C. Y. Lin, P. H. Krebsbach, S. J. Hollister, and J. W. Halloran, “ Mechanical Behavior of 3D Calcium Phosphate Cement Scaffolds Fabricated by Indirect Solid Freeform Fabrication In Vivo,” Bioceramics, 18, 957 – 60 ( 2005 ).en_US
dc.identifier.citedreferenceC. P. A. T. Klein, A. A. Driessen, K. de Groot, and A. van den Hooff, “ Biodegradation Behavior of Various Calcium Phosphate Materials in Bone Tissue,” J. Biomed. Mater. Res., 17, 769 – 84 ( 1983 ).en_US
dc.identifier.citedreferenceA. Uchida, E. Kurisaki, and K. Ono, “ The Use of Bioactive Ceramics for Bone Tumor Surgery ”; pp. 345 – 4 in Handbook of Bioactive Ceramicss, Vol. 11, Calcium Phosphate and Hydroxyapatite Ceramics, Edited by T. Yamamuro, L. L. Hench, and J. Wilsons. CRC Press, Boca Raton, FL, 1990.en_US
dc.identifier.citedreferenceW. E. Brown and L. C. Chow, “ A New Calcium Phosphate Setting Cement,” J. Dent. Res., 62, 672 ( 1983 ).en_US
dc.identifier.citedreferenceA. A. Mirtchi, J. Lamaitre, and E. Munting, “ Calcium Phosphate Cements : Action of Setting Regulators on the Properties of the Β-Tricalcium Phosphate-Monocalcium Phosphate Cements,” Biomaterials, 10, 634 – 8 ( 1989 ).en_US
dc.identifier.citedreferenceS. J. Hollister, “ Porous Scaffold Design for Tissue Engineering,” Nat. Mater., 4, 518 – 24 ( 2005 ).en_US
dc.identifier.citedreferenceC. Y. Lin, N. Kikuchi, and S. J. Hollister, “ A Novel Method for Biomaterial Scaffold Internal Architecture Design to Match Bone Elastic Properties with Desired Porosity,” J. Biomech., 37, 623 – 36 ( 2004 ).en_US
dc.identifier.citedreferenceE. Sachlos, N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka, “ Novel Collagen Scaffolds with Predefined Internal Morphology Made by Solid Freeform Fabrication,” Biomaterials, 24, 1487 – 97 ( 2003 ).en_US
dc.identifier.citedreferenceM. J. Cima, E. Sachs, L. G. Cima, J. Yoo, S. Khanuja, S. W. Borland, B. Wu, and R. A. Giordano, “ Computer-Derived Microstructures by 3D Printing : Bio- and Structural Materials ”; pp. 181 – 90 in Solid Freeform Fabrication Symposium 1994 Proceedings, Edited by H. L. Marcus, J. J. Beaman, J. W. Barlow, D. L. Bourell, and R. H. Crawford. The University of Texas at Austin, Austin, TX, 1994.en_US
dc.identifier.citedreferenceS. L. Ishaug-Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “ Three-Dimensional Culture of Rat Calvarial Osteoblasts in Porous Biodegradable Polymers,” Biomaterials, 19, 1405 – 12 ( 1998 ).en_US
dc.identifier.citedreferenceP. X. Ma and R. J. Zhang, “ Synthetic Nano-Scale Fibrous Extracellular Matrix,” J. Biomed. Mater. Res., 46, 60 – 72 ( 1999 ).en_US
dc.identifier.citedreferenceW. L. Murphy, R. G. Dennis, J.L Kileny, and D. J. Mooney, “ Salt Fusion : An Approach to Improve Pore Interconnectivity Within Tissue Engineering Scaffolds,” Tissue Eng., 8, 43 – 52 ( 2002 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.