Show simple item record

Bayesian Variable Selection with Joint Modeling of Categorical and Survival Outcomes: An Application to Individualizing Chemotherapy Treatment in Advanced Colorectal Cancer

dc.contributor.authorChen, Weien_US
dc.contributor.authorGhosh, Debashisen_US
dc.contributor.authorRaghunathan, Trivellore E.en_US
dc.contributor.authorSargent, Daniel J.en_US
dc.date.accessioned2010-04-01T15:53:53Z
dc.date.available2010-04-01T15:53:53Z
dc.date.issued2009-12en_US
dc.identifier.citationChen, Wei; Ghosh, Debashis; Raghunathan, Trivellore E.; Sargent, Daniel J. (2009). "Bayesian Variable Selection with Joint Modeling of Categorical and Survival Outcomes: An Application to Individualizing Chemotherapy Treatment in Advanced Colorectal Cancer." Biometrics 65(4): 1030-1040. <http://hdl.handle.net/2027.42/66395>en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66395
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19210736&dopt=citationen_US
dc.description.abstractColorectal cancer is the second leading cause of cancer related deaths in the United States, with more than 130,000 new cases of colorectal cancer diagnosed each year. Clinical studies have shown that genetic alterations lead to different responses to the same treatment, despite the morphologic similarities of tumors. A molecular test prior to treatment could help in determining an optimal treatment for a patient with regard to both toxicity and efficacy. This article introduces a statistical method appropriate for predicting and comparing multiple endpoints given different treatment options and molecular profiles of an individual. A latent variable-based multivariate regression model with structured variance covariance matrix is considered here. The latent variables account for the correlated nature of multiple endpoints and accommodate the fact that some clinical endpoints are categorical variables and others are censored variables. The mixture normal hierarchical structure admits a natural variable selection rule. Inference was conducted using the posterior distribution sampling Markov chain Monte Carlo method. We analyzed the finite-sample properties of the proposed method using simulation studies. The application to the advanced colorectal cancer study revealed associations between multiple endpoints and particular biomarkers, demonstrating the potential of individualizing treatment based on genetic profiles.en_US
dc.format.extent304716 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights©2009 International Biometric Societyen_US
dc.subject.otherBayesian Multivariate Regressionen_US
dc.subject.otherBiomarkeren_US
dc.subject.otherHierarchical Modelen_US
dc.subject.otherInteractionen_US
dc.subject.otherLatent Variableen_US
dc.subject.otherOncologyen_US
dc.titleBayesian Variable Selection with Joint Modeling of Categorical and Survival Outcomes: An Application to Individualizing Chemotherapy Treatment in Advanced Colorectal Canceren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBiostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, U.S.A.en_US
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.en_US
dc.contributor.affiliationotherDepartments of Statistics and Public Health Sciences, Penn State University, University Park, Pennsylvania 16802, U.S.A.en_US
dc.contributor.affiliationotherDivision of Biostatistics, Mayo Clinic, Rochester, Minnesota 55905, U.S.A.en_US
dc.identifier.pmid19210736en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66395/1/j.1541-0420.2008.01181.x.pdf
dc.identifier.doi10.1111/j.1541-0420.2008.01181.xen_US
dc.identifier.sourceBiometricsen_US
dc.identifier.citedreferenceAlbert, J. H. and Chib, S. ( 1993 ). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88, 669 – 679.en_US
dc.identifier.citedreferenceBarbieri, M. M. and Berger, J. O. ( 2004 ). Optimal predictive model selection. The Annals of Statistics 32, 870 – 897.en_US
dc.identifier.citedreferenceBarnard, J., McCulloch, R., and Meng, X. L. ( 2000 ). Modelling covariance matrices in terms of standard deviations and correlations, with applications to shrinkage. Statistica Sinica 10, 1281 – 1311.en_US
dc.identifier.citedreferenceBrown, P. J., Vannucci, M., and Fearn, T. ( 1998 ). Multivariate Bayesian variable selection and prediction. Journal of the Royal Statistical Society, Series B 60, 627 – 641.en_US
dc.identifier.citedreferenceChen, M. H. and Dey, D. K. ( 2003 ). Variable selection for multivariate logistic regression models. Journal of Statistical Planning and Inference 111, 37 – 55.en_US
dc.identifier.citedreferenceChen, W., Ghosh, D., Raghunathan, T. E., and Sargent, D. J. ( 2008 ). A false-discovery-rate-based loss framework for selection of interactions. Statistics in Medicine 27, 2004 – 2021.en_US
dc.identifier.citedreferenceGeorge, E. I. ( 1999 ). Discussion of Bayesian model averaging and model search strategies by M.A. Clyde. In Bayesian Statistics, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith ( eds ), vol. 6, 175 – 177. Oxford : Oxford University Press.en_US
dc.identifier.citedreferenceGeorge, E. I. and McCulloch, R. E. ( 1993 ). Variable selection via Gibbs sampling. Journal of the American Statistical Association 88, 881 – 889.en_US
dc.identifier.citedreferenceGoldberg, R. M., Sargent, D. J., Morton, R. F., Fuchs, C. S., Ramanathan, R. K., Williamson, S. K., Findlay, B. P., Pitot, H. C., and Alberts, S. R. ( 2004 ). A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. Journal of Clinical Oncology 22, 23 – 30.en_US
dc.identifier.citedreferenceJeffreys, H. ( 1961 ). The Theory of Probability, 3rd edition. Oxford : Oxford University Press.en_US
dc.identifier.citedreferenceLusa, L., McShane, L. M., Radmacher, M. D., Shih, J. H., Wright, G. W., and Simon, R. ( 2007 ). Appropriateness of some resampling-based inference procedures for assessing performance of prognostic classifiers derived from microarray data. Statististics in Medicine 26, 1102 – 1113.en_US
dc.identifier.citedreferenceMcLeod, H. L. and Murray, G. I. ( 1999 ). Tumor markers of prognosis in colorectal cancer. British Journal of Cancer 79, 191 – 203.en_US
dc.identifier.citedreferenceMilano, G. and McLeod, H. L. ( 2000 ). Can dihydropyrimidine dehydrogenase impact 5FU-based treatment? European Journal of Cancer Prevention 36, 37 – 42.en_US
dc.identifier.citedreferenceMiller, A. J. ( 2002 ). Subset Selection in Regression, 2nd edition. London : Chapman & Hall.en_US
dc.identifier.citedreferenceNeter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. ( 1996 ). Applied Linear Statistical Models. New York : McGraw-Hill.en_US
dc.identifier.citedreferenceSha, N., Tadesse, M. G., and Vannucci, M. ( 2006 ). Bayesian variable selection for the analysis of microarray data with censored outcomes. Bioinformatics 22, 2262 – 2268.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.