Show simple item record

Receptor-Coupled Phosphoinositide Hydrolysis in Human Retinal Pigment Epithelium

dc.contributor.authorFeldman, Eva L.en_US
dc.contributor.authorRandolph, Ann E.en_US
dc.contributor.authorJohnston, Gregory C.en_US
dc.contributor.authorDelMonte, Monte A.en_US
dc.contributor.authorGreene, Douglas A.en_US
dc.date.accessioned2010-04-01T15:55:55Z
dc.date.available2010-04-01T15:55:55Z
dc.date.issued1991-06en_US
dc.identifier.citationFeldman, Eva L.; Randolph, Ann E.; Johnston, Gregory C.; DelMonte, Monte A.; Greene, Douglas A. (1991). "Receptor-Coupled Phosphoinositide Hydrolysis in Human Retinal Pigment Epithelium." Journal of Neurochemistry 56(6): 2094-2100. <http://hdl.handle.net/2027.42/66430>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66430
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1851211&dopt=citationen_US
dc.description.abstractCarbachol and histamine stimulated phosphoinositide (PPI) hydrolysis in cultured human retinal pigment epithelium (RPE), as reflected by an accumulation of 3 H-inositol phosphates in the presence of 10 m M Li + . Carbachol increased PPI hydrolysis to greater than 600% of basal with an EC 50 of 60 Μ M ; stimulation was linear up to 60 min. This activation likely occurred via the M 3 muscarinic cholinergic receptor based on the IC 50 values for 4-diphenylacetoxy- N -methylpiperidine methiodide (0.47 n M ), pirenzepine (280 n M ), and 11-[[2-[(diethylamino)methyl]-1-piperidinyl]-acetyl]-5,11-dihydro-6 H -pyrido[2,3- b ][1,4]benzodiazepin-6-one (1.4 Μ M ). Carbachol-mediated PPI hydrolysis was decreased by 80% in the absence of extracellular Ca 2+ . Histamine stimulated PPI turnover in a linear manner by 180% with an EC 50 of 20 Μ M by the H 1 histaminergic receptor. Serotonin, glutamate, norepinephrine, and dopamine were inactive. In human RPE, the resting cytoplasmic Ca 2+ concentration, as determined by fura-2 fluorescence, was 138 ± 24 n M . On the addition of carbachol, there was a 180% increase in peak intracellular Ca 2+ ; addition of histamine increased intracellular Ca 2+ by 187%. These results suggest receptor-mediated, inositol lipid hydrolysis is coupled to intracellular Ca 2+ flux in human RPE.en_US
dc.format.extent763050 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1991 International Society for Neurochemistryen_US
dc.subject.otherHuman Pigment Retinal Epitheliumen_US
dc.subject.otherM 3 Muscarinic Receptoren_US
dc.subject.otherH 1 Histaminergic Receptoren_US
dc.subject.otherPhosphoinositide Hydrolysisen_US
dc.subject.otherCa 2+ Activationen_US
dc.subject.otherFura-2 AMen_US
dc.titleReceptor-Coupled Phosphoinositide Hydrolysis in Human Retinal Pigment Epitheliumen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum* Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum† Internal Medicine, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid1851211en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66430/1/j.1471-4159.1991.tb03471.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1991.tb03471.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAub, D. L. and Putney, J. W. Jr. ( 1985 ) Properties of receptor-controlled inositol trisphosphate formation in parotid acinar cells. Biochem. J. 225, 263 – 266.en_US
dc.identifier.citedreferenceBaudiere, B., Guillon, G., Bali, J.-P., and Jard, S. ( 1986 ) Muscarinic stimulation of inositol phosphate accumulation and acid secretion in gastric fundic mucosal cells. FEBS Lett. 198, 321 – 325.en_US
dc.identifier.citedreferenceBerridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P., and Irvine, R. F. ( 1983 ) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212, 473 – 482.en_US
dc.identifier.citedreferenceBonner, T. I. ( 1989 ) The molecular basis of muscarinic receptor diversity. Trends Neurosci. 12, 148 – 151.en_US
dc.identifier.citedreferenceBonner, T. I., Young, A. C., Brann, M. R., and Buckley, N. J. ( 1988 ) Cloning and expression of the human and rat M 5 muscarinic acetylcholine receptor genes. Neuron 1, 403 – 410.en_US
dc.identifier.citedreferenceCheng, Y.-C. and Prusoff, W. H. ( 1973 ) Relationship between the inhibition constant ( K i ) and the concentration of inhibitor which causes 50 percent inhibition (IC 50 ) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099 – 3108.en_US
dc.identifier.citedreferenceChew, C. S. and Brown, M. R. ( 1986 ) Release of intracellular Ca 2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim. Biophys. Acta 888, 116 – 125.en_US
dc.identifier.citedreferenceCutcliffe, N. and Osborne, N. N. ( 1987 ) Serotonergic and cholinergic stimulation of inositol phosphate formation in the rabbit retina. Evidence for the presence of serotonin and muscarinic receptors. Brain Res. 421, 95 – 104.en_US
dc.identifier.citedreferenceDean, N. M. and Moyer, J. D. ( 1987 ) Separation of multiple isomers of inositol phosphates formed in GH3 cells. Biochem. J. 242, 361 – 366.en_US
dc.identifier.citedreferenceDehaye, J. P., Marino, A., Soukias, Y., Poloczek, P., Winard, J., and Christophe, J. ( 1988 ) Functional characterization of muscarinic receptors in rat parotid acini. Eur. J. Pharmacol. 151, 427 – 434.en_US
dc.identifier.citedreferenceDelMonte, M. A. and Maumenee, I. H. ( 1980 ) New techniques for in vitro culture of human retinal pigment epithelium. Birth Defects 16, 327 – 338.en_US
dc.identifier.citedreferenceDoods, H. N., Mathy, M.-J., Davidesko, D., van Charldorp, K. J., de Jonge, A., and van Zwieten, P. A. ( 1987 ) Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M 1, M 2 and M 3 receptors. J. Pharmacol. Exp. Ther. 242, 257 – 262.en_US
dc.identifier.citedreferenceEberhard, D. A. and Holz, R. W. ( 1988 ) Intracellular Ca 2+ activates phospholipase C. Trends Neurosci. 11, 517 – 520.en_US
dc.identifier.citedreferenceEdelman, J. L. and Miller, S. S. ( 1990 ) Epinephrine stimulates fluid absorption across bovine retinal pigment epithelium. Assoc. Res. Vis. Ophthalmol. 31, 70.en_US
dc.identifier.citedreferenceFisher, S. K. and Agranoff, B. W. ( 1980 ) Calcium and the muscarinic synaptosomal phospholipid labeling effect. J. Neurochem. 34, 1231 – 1240.en_US
dc.identifier.citedreferenceFisher, S. K. and Agranoff, B. W. ( 1986 ) Phosphoinositide turnover in the CNS and in neural-related tissues, in Receptor Biochemistry and Methodology, Vol. 7: Phosphoinositides and Receptor Mechanisms ( Putney, J. W. Jr., ed ), pp. 219 – 243. Alan R. Liss, Inc., New York.en_US
dc.identifier.citedreferenceFisher, S. K. and Bartus, R. T. ( 1985 ) Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain. J. Neurochem. 45, 1085 – 1095.en_US
dc.identifier.citedreferenceFisher, S. K. and Cioffi, C. L. ( 1990 ) Reduction of muscarinic receptor density and of guanine nucleotide-stimulated phosphoinositide hydrolysis in human SH-SY5Y neuroblastoma cells following long-term treatment with 12- O -tetradecanoylphorbol 13-acetate or mezerein. J. Neurochem. 54, 1725 – 1734.en_US
dc.identifier.citedreferenceFisher, S. K., Domask, L. M., and Roland, R. M. ( 1988 ) Muscarinic receptor regulation of cytoplasmic Ca 2+ concentrations in human SK-N-SH neuroblastoma cells: Ca 2+ requirements for phospholipase C activation. Mol. Pharmacol. 35, 195 – 204.en_US
dc.identifier.citedreferenceFriedman, Z., Hackett, S. F., and Campochiaro, P. A. ( 1988 ) Human retinal pigment epithelial cells possess muscarinic receptors coupled to calcium mobilization. Brain Res. 446, 11 – 16.en_US
dc.identifier.citedreferenceGhazi, H. and Osborne, N. N. ( 1988 ) Agonist-induced stimulation of inositol phosphates in primary rabbit retinal cultures. J. Neurochem. 50, 1851 – 1858.en_US
dc.identifier.citedreferenceGodfrey, P. P. and Putney, J. W. Jr. ( 1984 ) Receptor-mediated metabolism of the phosphoinositides and phosphatidic acid in rat lacrimal acinar cells. Biochem. J. 218, 187 – 195.en_US
dc.identifier.citedreferenceGrynkiewicz, G., Poenie, M., and Tsien, R. Y. ( 1985 ) A new generation of Ca 2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440 – 3450.en_US
dc.identifier.citedreferenceHeacock, A. M., Fisher, S. K., and Agranoff, B. W. ( 1987 ) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. 48, 1904 – 1911.en_US
dc.identifier.citedreferenceHokin-Neaverson, M., Sadeghian, K., Majumder, A. L., and Eisenberg, F. Jr. ( 1975 ) Inositol is the water-soluble product of acetylcholine-stimulated breakdown of phosphatidylinositol in mouse pancreas. Biochem. Biophys. Res. Commun. 67, 1537 – 1544.en_US
dc.identifier.citedreferenceHonkanen, R. E., Howard, E. F., and Abdel-Latif, A. A. ( 1990 ) M3-muscarinic receptor subtype predominates in the bovine iris sphincter smooth muscle and ciliary processes. Invest. Ophthalmol. Vis. Sci. 31, 180 – 183.en_US
dc.identifier.citedreferenceHughes, B. A., Miller, S. S., Joseph, D. P., and Edelman, J. L. ( 1988 ) cAMP stimulates the Na + -K + pump in frog retinal pigment epithelium. Am. J. Physiol. 254, C84 – C98.en_US
dc.identifier.citedreferenceHughes, B. A., Adorante, J. S., Miller, S. S., and Lin, H. ( 1989 ) Apical electrogenic NaHCO 3 cotransport: a mechanism for HCO 3 absorption across the retinal pigment epithelium. J. Gen. Physiol. 94, 125 – 150.en_US
dc.identifier.citedreferenceIrvine, R. F., Anggard, E. E., Letcher, A. J., and Downes, C. P. ( 1985 ) Metabolism of inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate in rat parotid glands. Biochem. J. 229, 505 – 511.en_US
dc.identifier.citedreferenceIwatsuki, K., Horiuchi, A., Yonekura, H., Homma, N., Haruta, A., and Chiba, S. ( 1989 ) Subtypes of muscarinic receptors in pancreatic exocrine secretion in anesthetized dog. Pancreas 4, 339 – 345.en_US
dc.identifier.citedreferenceJolles, J., Schrama, L. H., and Gispen, W. H. ( 1981 ) Calcium-dependent turnover of brain polyphosphoinositides in vitro after prelabeling in vivo. Biochim. Biophys. Acta 666, 90 – 98.en_US
dc.identifier.citedreferenceKeller, S. K., Jentsch, T. J., and Wiederholt, M. ( 1986 ) pH- and Ca ++ -sensitive K conductance in bovine retinal pigment epithelial cells. Renal Physiol. 9, 100.en_US
dc.identifier.citedreferenceKoh, S.-W. M. and Chader, G. J. ( 1984 ) Agonist effects on the intracellular cyclic AMP concentration of retinal pigment epithelial cells in culture. J. Neurochem. 42, 287 – 289.en_US
dc.identifier.citedreferenceMarmor, M. F., Abdul-Rahim, A. S., and Cohen, D. S. ( 1980 ) The effect of metabolic inhibitors on retinal adhesion and subretinal fluid resorption. Invest. Ophthalmol. Vis. Sci. 19, 893 – 903.en_US
dc.identifier.citedreferenceMcDonough, P. M., Goldstein, D., and Brown, J. H. ( 1988 ) Elevation of cytoplasmic calcium concentration stimulates hydrolysis of phosphatidylinositol bisphosphate in chick heart cells: effect of sodium channel activators. Mol. Pharmacol. 33, 310 – 315.en_US
dc.identifier.citedreferenceMerritt, J. E. and Rink, T. J. ( 1987 ) Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J. Biol. Chem. 262, 17362 – 17369.en_US
dc.identifier.citedreferenceMiller, S. S. and Steinberg, R. H. ( 1977 ) Active transport of ions across frog retinal pigment epithelium. Exp. Eye Res. 25, 235 – 248.en_US
dc.identifier.citedreferenceNoell, W. K. ( 1963 ) Cellular physiology of the retina. J. Opt. Soc. Am. [A] 53, 36 – 58.en_US
dc.identifier.citedreferenceNowak, J. Z. and Maslinski, C. ( 1986 ) 3 H-Mepyramine binding and histamine-stimulated cAMP accumulation in mammalian retina. Agents Actions 18, 145 – 148.en_US
dc.identifier.citedreferenceNowak, J. Z., Sek, B., and Szkiel, B. ( 1989 ) Histamine-mediated regulation of cAMP levels and inositol phosphate metabolism in isolated rabbit retina. Agents Actions 27, 131 – 134.en_US
dc.identifier.citedreferenceO'Connor, P., Kropf, R. B., and Dowling, J. E. ( 1989 ) Catecholamine-sensitive adenylate cyclase in the white perch ( Roccus americanus ) retina: evidence for Β-adrenergic and dopamine receptors linked to adenylate cyclase. J. Neurochem. 53, 969 – 975.en_US
dc.identifier.citedreferenceOsborne, N. N. ( 1990 ) Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rabbit retina. Evidence for a specific quisqualate receptor subtype associated with neurones. Exp. Eye Res. 50, 397 – 405.en_US
dc.identifier.citedreferencePowers, R. E., Saluja, A. K., Houlihan, M. J., and Steer, M. L. ( 1985 ) Inositol trisphosphate production and amylase secretion in mouse pancreatic acini. Biochem. Biophys. Res. Commun. 131, 284 – 288.en_US
dc.identifier.citedreferencePutney, J. W. Jr., Hughes, A. R., Horstman, D. A., and Takemura, H. ( 1989 ) Inositol phosphate metabolism and cellular signal transduction. Adv. Exp. Med. Biol. 255, 37 – 48.en_US
dc.identifier.citedreferenceRubin, R. P., Godfrey, P. P., Chapman, D. A., and Putney, J. W. Jr. ( 1984 ) Secretagogue-induced formation of inositol phosphates in rat exocrine pancreas. Biochem. J. 219, 655 – 659.en_US
dc.identifier.citedreferenceSchoepp, D. D. and Johnson, B. G. ( 1988 ) Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid–sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J. Neurochem. 50, 1605 – 1613.en_US
dc.identifier.citedreferenceSteinberg, R. H. and Miller, S. S. ( 1979 ) Transport and membrane properties of the retinal pigment epithelium, in The Retinal Pigment Epithelium ( Zinn, K. M. and Marmor, M. F., eds ), pp. 205 – 225. Harvard University Press, Cambridge, Massachusetts.en_US
dc.identifier.citedreferenceSung, C. K., Hootman, S. R., Stuenkel, E. L., Kuroiwa, C., and Williams, J. A. ( 1988 ) Downregulation of protein kinase C in guinea pig pancreatic acini: effects on secretion. Am. J. Physiol. 254, G242 – G248.en_US
dc.identifier.citedreferenceTaylor, C. W., Merritt, J. E., Putney, J. W. Jr., and Rubin, R. P. ( 1986 ) Effects of calcium on phosphoinositide breakdown in exocrine pancreas. Biochem. J. 238, 765 – 772.en_US
dc.identifier.citedreferenceTennes, K. A. and Putney, J. W. Jr. ( 1986 ) Phosphoinositides and exocrine gland receptors, in Receptor Biochemistry and Methodology, Vol. 7: Phosphoinositides and Receptor Mechanisms ( Putney, J. W. Jr., ed ), pp. 363 – 382. Alan R. Liss, Inc., New York.en_US
dc.identifier.citedreferenceTsien, R. Y., Pozzan, T., and Rink, T. J. ( 1982 ) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J. Cell Biol. 94, 324 – 334.en_US
dc.identifier.citedreferenceWax, M. B. and Coca-Orados, M. ( 1989 ) Receptor-mediated phosphoinositide hydrolysis in human ocular ciliary epithelial cells. Invest. Ophthalmol. Vis. Sci. 30, 1675 – 1679.en_US
dc.identifier.citedreferenceZauberman, H. ( 1979 ) Adhesive forces between the retinal pigment epithelium and sensory retina, in The Retinal Pigment Epithelium ( Zinn, K. M. and Marnow, M. F., eds ), pp. 192 – 204. Harvard University Press, Cambridge, Massachusetts.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.