Show simple item record

A Nondimensional Evaluation of Tracer Sensitivity to Density Effects

dc.contributor.authorJalbert, Marcen_US
dc.contributor.authorDane, Jacob H.en_US
dc.contributor.authorAbriola, Linda M.en_US
dc.contributor.authorPennell, Kurt D.en_US
dc.date.accessioned2010-04-01T15:57:08Z
dc.date.available2010-04-01T15:57:08Z
dc.date.issued2000-03en_US
dc.identifier.citationJalbert, Marc; Dane, Jacob H.; Abriola, Linda M.; Pennell, Kurt D. (2000). "A Nondimensional Evaluation of Tracer Sensitivity to Density Effects." Ground Water 38(2): 226-233. <http://hdl.handle.net/2027.42/66451>en_US
dc.identifier.issn0017-467Xen_US
dc.identifier.issn1745-6584en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66451
dc.description.abstractThe purpose of this paper is to assess the importance of the density difference between a tracer solution and ground water on the determination of aquifer properties by inversion of tracer signals. To estimate the effect of this density difference, we developed a nondimensional, approximate solution to a Boundary Value Problem (BVP) based on a partial differential equation first presented by Bear and Dagan (1964). The BVP models the displacement of water by another aqueous solution with a different density in a rectangular, vertical cross section of a homogeneous porous medium. A rectangular sandbox analog model was used to verify the validity of the nondimensional solution for the case of a moving interface during the displacement of water by a heavier-than-water aqueous solution. A constant flow rate was maintained by applying constant heads at a fully penetrating vertical inflow and outflow chamber. The theory, which can be applied as a prediction tool for laboratory experiments, permits us to explore the implications of using denser-than-water tracers for determining aquifer hydraulic conductivity and dispersion coefficient values. According to our assessments, density effects should not be ignored, as small density differences can lead to serious uncertainties in permeability and dispersivity determinations.en_US
dc.format.extent678205 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2000 National Ground Water Associationen_US
dc.titleA Nondimensional Evaluation of Tracer Sensitivity to Density Effectsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Agronomy and Soils, Auburn University, AL 36849-5412; jdane@acesag.auburn.eduen_US
dc.contributor.affiliationotherSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgiaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66451/1/j.1745-6584.2000.tb00334.x.pdf
dc.identifier.doi10.1111/j.1745-6584.2000.tb00334.xen_US
dc.identifier.sourceGround Wateren_US
dc.identifier.citedreferenceBear, J. 1972. Dynamics of Fluids in Porous Media. New York : Elsevier.en_US
dc.identifier.citedreferenceBear, J., and G. Dagan. 1964. Moving interface in coastal aquifers. In Proc. Amer. Soc. Civil Eng. Hydraul. Div No. 4, 90 : 193 – 215.en_US
dc.identifier.citedreferenceGelhar, L.W. 1993. Stochastic Subsurface Hydrology. Englewood Cliffs, New Jersey : Prentice Hall.en_US
dc.identifier.citedreferenceGelhar, L.W., J.L. Wilson, and J.S. Miller. 1972. Gravitational and dispersive mixing in aquifers. In Proc. Amer. Soc. Civil Eng. Hydraul. Div No. 12, 98 : 2135 – 53.en_US
dc.identifier.citedreferenceLiu, H.H., and J.H. Dane. 1996. A criterion for gravitational instability in miscible dense plumes. Journal of Contaminant Hydrology 23 233 – 243.en_US
dc.identifier.citedreferenceMolz, F.J., O. GÜven, J.G. Melville, and C. Cardone, 1990. Hydraulic conductivity measurements at different scales and contaminant transport modeling. In Dynamics of Fluids in Hierarchical Porous Media, ed. J.H. Cushman New York : Academic Press.en_US
dc.identifier.citedreferenceOostrom, M., J.S. Hayworth, J.H. Dane, and O. GÜven. 1992. Behavior of dense aqueous phase leachate plumes in homogeneous porous media. Water Resources Research 28, no. 8 : 2123 – 2134.en_US
dc.identifier.citedreferenceOostrom, M., C. Hofstee, R.C. Walker, and J.H. Dane. 1999. Movement and remediation of trichloroethylene in a saturated heterogeneous porous medium. Journal of Contaminant Hydrology 37, 159 – 178.en_US
dc.identifier.citedreferenceTaylor, G.I. 1953. Dispersion of soluble matter in solvent flowing slowly through a tube. In Proc. Roy. Soc. A, No. 1137, 219 : 186 – 203.en_US
dc.identifier.citedreferenceToride, N., F.J. Leij, and M.Th. van Genuchten. 1995. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. U.S. Salinity Laboratory Research Report No. 137, U.S.D.A., Riverside, California.en_US
dc.identifier.citedreferencevon Rosenberg, D.U. 1956. Mechanics of steady state single phase fluid displacement from porous media. J. Amer. Inst. Chem. Eng 2, 55 – 58.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.