Show simple item record

Expression of Adhesion Molecules during Tooth Resorption in Feline Teeth: A Model System for Aggressive Osteoclastic Activity

dc.contributor.authorShigeyama, Y.en_US
dc.contributor.authorGrove, T. K.en_US
dc.contributor.authorStrayhorn, C. L.en_US
dc.contributor.authorSomerman, Martha J.en_US
dc.date.accessioned2010-04-13T18:43:39Z
dc.date.available2010-04-13T18:43:39Z
dc.date.issued1996en_US
dc.identifier.citationShigeyama, Y.; Grove, T.K.; Strayhorn, C.; Somerman, M.J. (1996). "Expression of Adhesion Molecules during Tooth Resorption in Feline Teeth: A Model System for Aggressive Osteoclastic Activity." Journal of Dental Research 9(75): 1650-1657. <http://hdl.handle.net/2027.42/66661>en_US
dc.identifier.issn0022-0345en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66661
dc.description.abstractTooth resorption, a common feline dental problem, is often initiated at the cemento-enamel junction and hence is called cat 'neck' lesion. Studies have demonstrated that osteoclasts/odontoclasts are increased and activated at resorption sites, and that areas of resorption are partly repaired by formation of tissues resembling bone, cementum, and possibly dentin. However, the cellular/molecular mechanisms/factors involved in resorption and repair are unknown. In this study of tissues from cats with 'neck' lesions, we used specific antibodies and immunohistochemical analyses to examine adhesion molecules associated with mineralized tissues, bone sialoprotein (BSP) and osteopontin (OPN), and a cell-surface receptor linked with these molecules, α vβ3, for their localization in these lesions. In addition, to determine general cellular activity during repair, we performed in situ hybridization using a type I collagen riboprobe. Results showed OPN localized to resorption fronts and reversal lines, while BSP was localized to reversal lines. However, some osteoclasts and odontoblasts "sat" on mineralized surfaces not associated with OPN. The cell-surface receptor, αvβ 3, was localized to surfaces of osteoclasts/odontoclasts. Type I collagen mRNA was expressed where osteoblasts attempted to repair mineralized tissue. In contrast, odontoblasts did not express mRNA for type I collagen. This study suggests that osteoclastic resorption is the predominant activity in 'neck' lesions and that this activity was accompanied, at least in part, by increased concentrations of OPN and an associated integrin, α vβ3, at resorption sites. Lack of collagen expression by odontoblasts indicates that odontoblasts do not play an active role in attempts at repair.en_US
dc.format.extent3108 bytes
dc.format.extent1642405 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSAGE Publicationsen_US
dc.subject.otherαvβ3en_US
dc.subject.otherbone sialoproteinen_US
dc.subject.otherodontoclastsen_US
dc.subject.otherosteoclastsen_US
dc.subject.otherosteopontin.en_US
dc.titleExpression of Adhesion Molecules during Tooth Resorption in Feline Teeth: A Model System for Aggressive Osteoclastic Activityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics/Prevention/Geriatrics, Department of Pharmacology, School of Medicine, University of Michigan, 1011 N. University, Ann Arbor, Michigan 48109-1078en_US
dc.contributor.affiliationotherDepartment of Periodontics/Prevention/Geriatricsen_US
dc.contributor.affiliationotherThe Florida Veterinary Dental Clinic, 875 17th Street, Vero Beach, Florida 32960en_US
dc.contributor.affiliationotherDepartment of Periodontics/Prevention/Geriatricsen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66661/2/10.1177_00220345960750090601.pdf
dc.identifier.doi10.1177/00220345960750090601en_US
dc.identifier.citedreferenceAlbelda SM, Buck CA (1990). Integrins and other cell adhesion molecules. FASEB J 4:2868-2880.en_US
dc.identifier.citedreferenceBianco P., Fisher LW, Young MF, Termine JD, Robey PG (1991). Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int 49:421-426.en_US
dc.identifier.citedreferenceBoskey AL, Maresca M., Ullrich W., Doty SB, Butler WT, Prince CW (1993). Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147-159.en_US
dc.identifier.citedreferenceChen J., Mc Culloch C., Sodek J. (1993). Bone sialoprotein in developing porcine dental tissues: cellular expression and comparison of tissue localization with osteopontin and osteonectin. Arch Oral Biol 38:241-249.en_US
dc.identifier.citedreferenceColes S. (1990). The prevalence of buccal cervical root resorptions in Australian cats. J Vet Dent 7:14-16.en_US
dc.identifier.citedreferenceDenhardt DT, Chambers AF (1994). Overcoming obstacles to metastasis-defenses against host defenses: Osteopontin (OPN) as a shield against attack by cytotoxic host cells. J Cell Biochem 56:48-51.en_US
dc.identifier.citedreferenceDenhardt DT, Guo X. (1993). Osteopontin: a protein with diverse functions. FASEB J 7:1475-1482.en_US
dc.identifier.citedreferenceFisher LW (1992). Structure/function studies of the sialoglycoproteins and proteoglycans of bone: It is still the early days. In: Chemistry and biology of mineralized tissues. Slavkin H, Price P, editors. Amsterdam-New York: Excerpta Medica, pp. 177-187.en_US
dc.identifier.citedreferenceHarvey CE (1992). Epidemiology of periodontal conditions in dog and cats. Proceedings of the Sixth Annual Veterinary Dental Forum, the American Veterinary Dental College and the Academy of Veterinary Dentistry, Nov 13-15, 1992, Las Vegas, Nevada. Nabisco Foods Company, pp. 45-46.en_US
dc.identifier.citedreferenceHelfrich MH, Nesbitt SA, Dorey EL, Horton MA (1992). Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a β3 integrin. J Bone Miner Res 7:335-343.en_US
dc.identifier.citedreferenceHunter GK, Goldberg HA (1994). Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem 302:175-179.en_US
dc.identifier.citedreferenceHunter GK, Kyle CL, Goldberg HA (1994). Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300:723-728.en_US
dc.identifier.citedreferenceKingsley DM (1994). The TGF β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Gene Dev 8:133-146.en_US
dc.identifier.citedreferenceLakkakorpi PT, Horton MA, Helfrich MH, Karhukorpi E-K., Vaananen HK (1991). Vitronectin receptor has a role in bone resorption but does not mediate tight sealing zone attachment of osteoclasts to the bone surface. J Cell Biol 115:1179-1186.en_US
dc.identifier.citedreferenceMac Neil RL, Sheng N., Strayhorn C., Fisher LW, Somerman MJ (1994). Bone sialoprotein is localized to the root surface during cementogenesis. J Bone Miner Res 9:1597-1606.en_US
dc.identifier.citedreferenceMaeda H., Kukita T., Akamine A., Kukita A., Iijima T. (1994). Localization of osteopontin in resorption lacunae formed by osteoclast-like cells: a study by a novel monoclonal antibody which recognizes rat osteopontin. Histochem 102:247-254.en_US
dc.identifier.citedreferenceMasi L., Brandi ML, Robey PG, Crescioli C., Calvo JC, Bernabei P., et al. (1995). Biosynthesis of bone sialoprotein by a human osteoclast-like cell line (FLG 29.1). J Bone Miner Res 10:187-196.en_US
dc.identifier.citedreferenceMc Kee MD, Nanci A. (1996). Osteopontin at mineralized tissue interfaces in bone, teeth and osseointegrated implants: Ultrastructural distribution and implications for mineralized tissue formation, turnover and repair. Microsc Res Technique 33:141-164.en_US
dc.identifier.citedreferenceOguro I., Ozawa H. (1988). The histochemical localization of acid phosphatase activity in BMU. J Bone Min Metab 6:44-49.en_US
dc.identifier.citedreferenceOkuda A., Harvey CE (1992a). Etiopathogenesis of feline dental resorptive lesions. Vet Clin North Am Small Anim Pract 22:1385-1404.en_US
dc.identifier.citedreferenceOkuda A., Harvey CE (1992b). Immunohistochemical distributions of interleukins as possible stimulators of odontoclastic resorption activity in feline dental resorptive lesions. Proceedings of the Sixth Annual Veterinary Dental Forum, the American Veterinary Dental College and the Academy of Veterinary Dentistry, Nov 13-15, 1992, Las Vegas, Nevada. Nabisco Foods Company, pp. 41-43.en_US
dc.identifier.citedreferencePatarca R., Saavedra RA, Cantor H. (1993). Molecular and cellular basis of genetic resistance to bacterial infection: The role of the early T-lymphocyte activation-1/osteopontin gene. Crit Rev Immunol 13:225-246.en_US
dc.identifier.citedreferenceRegezi JA, Sciubba JJ (1989). Abnormalities of dental pulp: Internal resorption. In: Oral pathology: Clinical-pathologic correlations. Philadelphia: W.B. Saunders Co., pp. 483-484.en_US
dc.identifier.citedreferenceReichart PA, Durr U.-M, Triadan H., Vickendey G. (1984). Periodontal disease in the domestic cat. A histopathologic study. J Periodont Res 19:67-75.en_US
dc.identifier.citedreferenceReinholt FP, Hultenby K., Oldberg A., Heinegard D. (1990). Osteopontin-a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA 87:4473-4475.en_US
dc.identifier.citedreferenceRoss FP, Chappel J., Alvarez JI, Sander D., Butler WT, Farach-Carson MC, et al. (1993). Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin αvβ3 potentiate bone resorption. J Biol Chem 268:9901-9907.en_US
dc.identifier.citedreferenceSchneck GW, Osborn JW (1976). Neck lesions in the teeth of cats. Vet Rec 99:100.en_US
dc.identifier.citedreferenceSenger DG, Perruzzi CA, Papadopoulos A., Tenen DG (1989). Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochem Biophys Acta 996:43-48.en_US
dc.identifier.citedreferenceShiraga H., Min W., Van Dusen WJ, Clayman MD, Miner D., Terrell CH, et al. (1992). Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci USA 89:426-430.en_US
dc.identifier.citedreferenceSodek J., Chen J., Kasugai S., Nagata T., Zhang Q., Mc Kee MD, et al. (1992). Elucidating the functions of bone sialoprotein and osteopontin in bone formation. In: Chemistry and biology of mineralized tissues. Slavkin H, Price P, editors. Amsterdam- New York: Excerpta Medica, pp. 297-307.en_US
dc.identifier.citedreferenceSuzuki S., Argraves WS, Pytela R., Arai H., Krusius T., Pierschbacher MD, et al. (1986). c DNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors. Proc Natl Acad Sci USA 83:8614-8618.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.