Show simple item record

A Fatigue Crack Growth Model for Random Fiber Composites

dc.contributor.authorAtodaria, D.en_US
dc.contributor.authorPutatunda, S.en_US
dc.contributor.authorMallick, P. K.en_US
dc.date.accessioned2010-04-13T19:32:14Z
dc.date.available2010-04-13T19:32:14Z
dc.date.issued1997en_US
dc.identifier.citationAtodaria, D.; Putatunda, S.; Mallick, P. (1997). "A Fatigue Crack Growth Model for Random Fiber Composites." Journal of Composite Materials 31(18): 1838-1855. <http://hdl.handle.net/2027.42/67507>en_US
dc.identifier.issn0021-9983en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/67507
dc.description.abstractFatigue crack growth behavior of a randomly oriented short carbon fiber rein-forced polyether ether ketone (PEEK) composite is studied at four different load ratios. Based on the experimental data, a new fatigue crack growth model is proposed which accounts for crack growth throughout the entire fatigue cycle and not just at the maximum load. The proposed model involves a weighted averaging procedure and is found to fit the fatigue crack growth rates at all load ratios in a single power law equation. Finally, it is observed that the fatigue threshold intensity of this material decreases with increasing load ratio.en_US
dc.format.extent3108 bytes
dc.format.extent789152 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSage Publicationsen_US
dc.titleA Fatigue Crack Growth Model for Random Fiber Compositesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAerospace Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128-1491en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, Wayne State University, Detroit, MI 48202en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, Wayne State University, Detroit, MI 48202en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/67507/2/10.1177_002199839703101804.pdf
dc.identifier.doi10.1177/002199839703101804en_US
dc.identifier.sourceJournal of Composite Materialsen_US
dc.identifier.citedreference1. Paris, P. C. and F. Erdogan. 1968. J. Basic Engineering, 85:528-537.en_US
dc.identifier.citedreference2. Wyzgoski, M. G. and G. E. Novak. 1995. Polymer Composites, 16:38-51.en_US
dc.identifier.citedreference3. Dibenedetto, A. T. and G. Salee. 1979. Polymer Engineering and Science, 19:512-518.en_US
dc.identifier.citedreference4. Wang, S. S., E. S.-M. Chim and N. M. Zahlan. 1983. J. Composite Mails, 17:250-266.en_US
dc.identifier.citedreference5. Dowling, N. E.1993. Mechanical Behavior of Materials, Englewood Cliffs, NJ: Prentice Hall.en_US
dc.identifier.citedreference6. ASTM E-647. 1995. "Test Method for Determining of Plane Strain Fracture Toughness of Metallic Materials,"Annual Book of ASTM Standard, 0.3.01.en_US
dc.identifier.citedreference7. Vosikovosky, O.1972. Engineering Fracture Mechanics, 11:595-606.en_US
dc.identifier.citedreference8. Barsom, J. M.1974. W. R. C. Bulletin, 194:123-126.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.