Show simple item record

Quasi-Static Behavior of Individual C-Block Piezoelectric Actuators

dc.contributor.authorMoskalik, Andrew J.en_US
dc.contributor.authorBrei, Diann E.en_US
dc.date.accessioned2010-04-14T13:45:32Z
dc.date.available2010-04-14T13:45:32Z
dc.date.issued1997en_US
dc.identifier.citationMoskalik, Andrew; Brei, Diann (1997). "Quasi-Static Behavior of Individual C-Block Piezoelectric Actuators." Journal of Intelligent Material Systems and Structures 7(8): 571-587. <http://hdl.handle.net/2027.42/68550>en_US
dc.identifier.issn1045-389Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/68550
dc.description.abstractMost piezoelectric actuators used in smart structure applications are either stiff stacks which produce high forces and small deflections, or compliant benders which produce large deflections and small forces. This leaves a mid-range gap in actuator performance in which many applications operate. A new class of solid state actuators, known as C-blocks, has been developed as a mid-range actuator. A C-block is a semicircular composite bender actuated with piezoelectric layers. It can be combined in series and/or parallel to increase actuator deflection and/or force. A simple, linear analytical model for the quasi-static force-deflection behavior of a generic individual C-block is presented in this paper. This model can be used to determine the relationship between force and deflection, as well as the free deflection, blocking force, actuator stiffness, and maximum energy transferable to the actuated system. This model was experimentally verified with three case studies: PZT-8 and PZT-5H ceramic unimorphs; PVdF polymeric bimorphs; and four-layer PVdF polymeric multimorphs. The results from these case studies confirm that C-blocks are over six times stiffer, and generate over two-and-a-half times more force than a comparable straight bender.en_US
dc.format.extent3108 bytes
dc.format.extent3153905 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSage Publications, Thousand Oaks, CAen_US
dc.titleQuasi-Static Behavior of Individual C-Block Piezoelectric Actuatorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering and Applied Mechanics, The University of Michigan, 2250 G. G. Brown, Ann Arbor, MI 48109-2125en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/68550/2/10.1177_1045389X9700800702.pdf
dc.identifier.doi10.1177/1045389X9700800702en_US
dc.identifier.citedreferenceAugust, J. A. and S. P. Joshi. 1996. "Preliminary Design of Smart Structure Fins for High-Speed Missiles", in Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, C. R. Crowe, ed., Proc. SPIE, 2721:58-65.en_US
dc.identifier.citedreferenceBamford, R., C. P. Kuo, R. Glaser and B. K. Wada. 1995. "Long Stroke Precision PZT Actuator", in AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference-Collection of Technical Papers, New York: AIAA, 3278-3284.en_US
dc.identifier.citedreferenceBaz, A. and S. Poh. 1988. "Performance of an Active Control System with Piezoelectric Actuators,"Journal of Sound and Vibration, 126:327-343.en_US
dc.identifier.citedreferenceBrei, D. 1994. "Design and Development of a Piezoelectric Microactuator Building Block for Deflection Improvement", in Dynamic Systems and Control, Vol. 2, DSC 55-2, New York: ASME, pp. 717-723.en_US
dc.identifier.citedreferenceBrei, D. 1995a. "Design and Development of a New Class of Piezoelectric Actuators for Force Improvement", in Active Materials and Smart Structures, G. L. Anderson and D. C. Lagoudas, eds., Proc. SPIE, 2427: 343-356.en_US
dc.identifier.citedreferenceBrei, D. 1995b. "Force-Deflection Behavior for C-Block Piezoelectric Actuator Architectures", in Smart Structures and Materials 1995: Smart Structures and Integrated Systems, I. Chopra, ed., Proc. SPIE, 2443:362-373.en_US
dc.identifier.citedreferenceBrei, D. J. Ervin and A. Moskalik. 1996. "Deflection-Voltage Performance of Asymmetrically Activated Piezoelectric C-Block Actuators", in Smart Structures and Materials 1996: Smart Structures and Integrated Systems, I. Chopra, ed., Proc. SPIE, 2717:276-286.en_US
dc.identifier.citedreferenceDamjanovic, D. and R. E. Newnham. 1992. "Electrostrictive and Piezoelectric Materials for Actuator Applications", Journal of Intelligent Material Systems and Structures, 3:190-208.en_US
dc.identifier.citedreferenceDogan, A., K. Uchino and R. E. Newnham. 1997. "Composite Piezoelectric Transducer with Truncated Conical Endcaps Cymbal'", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(3): 597-605.en_US
dc.identifier.citedreferenceFuller, C. R. and G. P. Gibbs. 1994. "Active Control of Interior Noise in a Business Jet Using Piezoelectric Actuators", Proceedings, 1994 National Conference on Noise Control Engineering, Poughkeepsie, NY: Institute of Noise Control Engineering, pp. 389-394.en_US
dc.identifier.citedreferenceGiurgiutiu, V., Z. Chaudhry and C. A. Rogers. 1995. "Stiffness Issues in the Design of ISA Displacement Amplification Devices: Case Study of Hydraulic Displacement Amplifier", in Smart Structures and Materials 1995: Smart Structures and Integrated Systems, I. Chopra, ed., Proc. SPIE, 2443:105-119.en_US
dc.identifier.citedreferenceHaertling, G. H. 1994. "Ultra-High-Displacement Actuator", American Ceramic Society Bulletin, 73(2):93-96.en_US
dc.identifier.citedreferenceHall, S. R. and E. F. Prechtl. 1996. "Development of a Piezoelectric Servoflap for Helicopter Rotor Control", Smart Materials and Structures, 5:26-34.en_US
dc.identifier.citedreferenceKudva, J., P. Jardine, C. Martin and K. Appa. 1996. "Overview of the ARPAIWL 'Smart Structures and Materials Development-Smart Wing' Contract", in Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, C. R. Crowe, ed., Proc. SPIE, 2721:10-16.en_US
dc.identifier.citedreferenceKugel, V. D., S. Chandran and L. E. Cross. 1997. "Comparative Analysis of Piezoelectric Bending-Mode Actuators", in Smart Structures and Materials 1997: Smart Materials Technologies, W. C. Simmons, I. A. Aksay and D. R. Huston, eds., Proc. SPIE, 3040:70-80.en_US
dc.identifier.citedreferenceLarson, P. H. and J. R. Vinson, 1993. "The Use of Piezoelectric Materials in Curved Beams and Rings", Adaptive Structures and Material Systems, AD-Vol. 35, New York: ASME, pp. 277-285.en_US
dc.identifier.citedreferenceMartinez, D. R., T. D. Hinnerichs and J. M. Redmond. 1996. "Vibration Control for Precision Manufacturing Using Piezoelectric Actuators", Journal of Intelligent Material Systems and Structures, 7:182-191.en_US
dc.identifier.citedreferenceMoskalik, A. J. and D. E. Brei. 1995. "Deflection-Voltage Behavior of Individual Polymeric Multilayer Arched Piezoelectric Actuators", AMSE Paper 95-WA/AD-8, New York: ASME.en_US
dc.identifier.citedreferenceOnitsuka, K., A. Dogan, J. F. Tressler, Q. Xu, S. Yoshikawa and R. E. Newnham. 1995. "Metal-Ceramic Composite Transducer, the'Moonie', Journal of Intelligent Material Systems and Structures, 6:447-455.en_US
dc.identifier.citedreferencePaine, J. S. N. and Z. Chaudhry. 1996. "The Impact of Amplification on Efficiency and Energy Density of Induced Strain Actuators", in Proceedings of the ASME Aerospace Division, AD-Vol. 52, J. C. I. Chang, J. Coulter, D. Brei, D. Martinez, W. Ng and P. P. Feidman, eds., New York: ASME, pp. 511-516.en_US
dc.identifier.citedreferenceQatu, M. S. 1993. "Theories and Analyses of Thin and Moderately Thick Laminated Composite Curved Beams", International Journal of Solids and Structures, 30(20):2743-2756.en_US
dc.identifier.citedreferenceSamak, D. K. and I. Chopra. 1993. "A Feasibility Study to Build a Smart Rotor: Trailing Edge Flap Actuation", Smart Structures and Materials 1992: Smart Structures and Intelligent Systems, N. W. Hagood and G. J. Knowles, eds., Proc. SPIE, 1917:225-237.en_US
dc.identifier.citedreferenceSamak, D. K. and I. Chopra. 1996. "Design of High Force, High Displacement Actuators for Helicopter Rotors", Smart Materials and Structures, 5:58-67.en_US
dc.identifier.citedreferenceStaveley. (no date). "EBL Piezoceramic Tubes for Ultraprecise Positioning Applications" (brochure), available from Staveley Sensors, 91 Prestige Park Circle, East Hartford, CT 06108-1918.en_US
dc.identifier.citedreferenceSumali, H. and H. Cudney. 1994. "An Active Engine Mount with a Piezoelectric Stacked Actuator", Proceedings of the 35th SDM Conference, New York: AIAA, pp. 1233-1241.en_US
dc.identifier.citedreferenceThirupathi, S. R. and N. G. Naganathan. 1992. "Use of Piezoceramic Actuation for Automotive Active Suspension Mechanisms: A Feasibility Study", Robotics, Spatial Mechanisms, and Mechanical Systems, New York: ASME, pp. 233-241.en_US
dc.identifier.citedreferenceYang, R., M. Jouaneh and R. Schweizer. 1996. "Design and Characterization of a Low-Profile Micropositioning Stage", Precision Engineering, 18:20-29.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.