Show simple item record

Initiation and evolution of phase separation in heteroepitaxial InAlAs films

dc.contributor.authorShin, B.en_US
dc.contributor.authorLin, A.en_US
dc.contributor.authorLappo, K.en_US
dc.contributor.authorGoldman, R. S.en_US
dc.contributor.authorHanna, M. C.en_US
dc.contributor.authorFrancoeur, S.en_US
dc.contributor.authorNorman, A. G.en_US
dc.contributor.authorMascarenhas, A.en_US
dc.date.accessioned2010-05-06T20:29:00Z
dc.date.available2010-05-06T20:29:00Z
dc.date.issued2002-05-06en_US
dc.identifier.citationShin, B.; Lin, A.; Lappo, K.; Goldman, R. S.; Hanna, M. C.; Francoeur, S.; Norman, A. G.; Mascarenhas, A. (2002). "Initiation and evolution of phase separation in heteroepitaxial InAlAs films." Applied Physics Letters 80(18): 3292-3294. <http://hdl.handle.net/2027.42/69359>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69359
dc.description.abstractWe have investigated the initiation and evolution of phase separation in heteroepitaxial InAlAs films. In misfit-free InAlAs layers, cross-sectional scanning tunneling microscopy (XSTM) reveals the presence of isotropic nanometer-sized clusters. For lattice-mismatched InAlAs layers with 1.2% misfit, quasiperiodic contrast modulations perpendicular to the growth direction are apparent. Interestingly, these lateral modulations are apparently initiated within the first few bilayers of film growth, and both the amplitude and wavelength of the modulations increase with film thickness. The saturation value of the modulation wavelength determined from XSTM coincides with the lateral superlattice period determined from (002) x-ray reciprocal space maps, suggesting that the lateral modulation wavelength represents a periodic composition variation. Together, these results suggest that phase separation in the heteroepitaxial InAlAs thin-film system is a misfit-driven kinetic process initiated by random compositional nonuniformities, which later develop into coupled compositional and surface morphological variations. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent434316 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleInitiation and evolution of phase separation in heteroepitaxial InAlAs filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherNational Renewable Energy Laboratory, Golden, Colorado 80401en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69359/2/APPLAB-80-18-3292-1.pdf
dc.identifier.doi10.1063/1.1476386en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceG. B. Stringfellow, J. Cryst. Growth JCRGAE65, 454 (1983).en_US
dc.identifier.citedreferenceA. Zunger and S. Mahajan, Handbook on Semiconductors (North–Holland, Amsterdam, 1994), Vol. 3, p. 1399.en_US
dc.identifier.citedreferenceH. K. Cho, J. Y. Lee, M. S. Kwon, B. Lee, J. H. Baek, and W. S. Han, Mater. Sci. Eng., B MSBTEK64, 174 (1999).en_US
dc.identifier.citedreferenceS. W. Jun, T.-Y. Seong, J. H. Lee, and B. Lee, Appl. Phys. Lett. APPLAB68, 3443 (1996).en_US
dc.identifier.citedreferenceF. Peiró, A. Cornet, J. C. Ferrer, J. R. Morante, G. Halkias, and A. Georgakilas, Mater. Res. Soc. Symp. Proc. MRSPDH419, 265 (1996).en_US
dc.identifier.citedreferenceG. Grenet, M. Gendry, M. Oustric, Y. Robach, L. Porte, G. Hollinger, O. Marty, M. Pitaval, and C. Priester, Appl. Surf. Sci. ASUSEE123, 324 (1998).en_US
dc.identifier.citedreferenceJ. M. Millunchick, R. D. Twesten, D. M. Follstaedt, S. R. Lee, E. D. Jones, Y. Zhang, S. P. Ahrenkiel, and A. Mascarenhas, Appl. Phys. Lett. APPLAB70, 1402 (1997).en_US
dc.identifier.citedreferenceB. Lita, R. S. Goldman, J. D. Phillips, and P. K. Bhattacharya, Appl. Phys. Lett. APPLAB74, 2824 (1999).en_US
dc.identifier.citedreferenceS. R. Lee, J. Mirecki Millunchick, R. D. Twesten, D. M. Follstaedt, J. L. Reno, S. P. Ahrenkiel, and A. G. Norman, J. Mater. Sci. JMTSAS10, 191 (1999).en_US
dc.identifier.citedreferenceM. L. Seaford, W. Wu, K. G. Eyink, D. H. Tomich, J. R. Tucker, and L. F. Eastman, J. Vac. Sci. Technol. B JVTBD915, 1274 (1997).en_US
dc.identifier.citedreferenceR. S. Goldman, R. M. Feenstra, C. Silfvenius, B. Stålnacke, and G. Landgren, J. Vac. Sci. Technol. B JVTBD915, 1027 (1997).en_US
dc.identifier.citedreferenceR. J. Asaro and W. A. Tiller, Metall. Trans. MTGTBF3, 1789 (1972).en_US
dc.identifier.citedreferenceD. J. Srolovitz, Acta Metall. AMETAR37, 621 (1989).en_US
dc.identifier.citedreferenceB. J. Spencer, P. W. Voorhees, and J. Tersoff, Appl. Phys. Lett. APPLAB76, 3022 (2000).en_US
dc.identifier.citedreferenceT. Shitara, D. D. Vvedensky, J. H. Neave, and B. A. Joyce, Mater. Res. Soc. Symp. Proc. MRSPDH312, 267 (1993).en_US
dc.identifier.citedreferenceS. Francoeur, M. C. Hanna, A. G. Norman, and A. Mascarenhas, Appl. Phys. Lett. APPLAB80, 243 (2002).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.