Show simple item record

Hyperfine structure in the red emission system of NbN

dc.contributor.authorFemenias, J. -L.en_US
dc.contributor.authorAthenour, C.en_US
dc.contributor.authorDunn, Thomas M.en_US
dc.date.accessioned2010-05-06T20:29:16Z
dc.date.available2010-05-06T20:29:16Z
dc.date.issued1975-10-01en_US
dc.identifier.citationFemenias, J.‐L.; Athenour, C.; Dunn, T. M. (1975). "Hyperfine structure in the red emission system of NbN." The Journal of Chemical Physics 63(7): 2861-2868. <http://hdl.handle.net/2027.42/69362>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69362
dc.description.abstractA detailed study of hyperfine structure observed in the 0,0 band of the 3Φ (aβ) →3Δ (aβ) system of NbN has shown that the secondary hyperfine effects observed in this structure are not due to a perturbation in the 3Δ state but rather to the presence of a nonnegligible hyperfine effect in the 3Φ excited state. Calculations of the intensity factors corresponding to the observed transitions confirm this hypothesis and give results in excellent agreement with experiment.en_US
dc.format.extent3102 bytes
dc.format.extent523790 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHyperfine structure in the red emission system of NbNen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumChemistry Department, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69362/2/JCPSA6-63-7-2861-1.pdf
dc.identifier.doi10.1063/1.431691en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceR. A. Frosch and H. M. Foley, Phys. Rev. 88, 1337 (1952).en_US
dc.identifier.citedreferenceT. L. Porter and S. P. Davis, J. Opt. Soc. Am. 53, 338 (1963).en_US
dc.identifier.citedreferenceD. M. Eakin and S. P. Davis, J. Mol. Spectrosc. 35, 27 (1970).en_US
dc.identifier.citedreferenceE. Hulthén and H. Neuhaus, Phys. Rev. 102, 1415 (1956).en_US
dc.identifier.citedreferenceT. M. Dunn, in Molecular Spectroscopy: Modern Research, edited by Rao and Mathews (Academic, New York, 1972), Ch. 4.4.en_US
dc.identifier.citedreferenceH. E. Radford, Phys. Rev. A 136, 1571 (1964).en_US
dc.identifier.citedreferenceK. M. Evenson, J. L. Dunn, and H. P. Broida, Phys. Rev. A 136, 1566 (1964).en_US
dc.identifier.citedreferenceR. L. Barger, H. P. Broida, A. J. Estin, and H. E. Radford, Phys. Rev. Lett. 9, 345 (1962).en_US
dc.identifier.citedreferenceR. F. Barrow, W. J. M. Gissane, and R. Richards, Proc. R. Soc. A 300, 469 (1967).en_US
dc.identifier.citedreferenceP. W. Atkins, Proc. R. Soc. A 300, 487 (1967).en_US
dc.identifier.citedreferenceD. Richards and R. F. Barrow, Nature (Lond.) 217, 842 (1968).en_US
dc.identifier.citedreferenceD. Richards and R. F. Barrow, Nature (Lond.) 219, 1244 (1968).en_US
dc.identifier.citedreferenceA. Adams, W. Klemperer, and T. M. Dunn, Can. J. Phys. 46, 2213 (1968).en_US
dc.identifier.citedreferenceR. Stringat, C. Athénour, and J.‐L. Féménias, Can. J. Phys. 50, 395 (1972).en_US
dc.identifier.citedreferenceR. Bacis and A. Bernard, Can. J. Phys. 51, 648 (1973).en_US
dc.identifier.citedreferenceR. Bacis, N. Bessis, and R. Collomb, Phys. Rev. A 8, 2255 (1973).en_US
dc.identifier.citedreferenceT. M. Dunn and K. M. Rao, Nature (Lond.) 222, 266 (1969).en_US
dc.identifier.citedreferenceFurther details will be given in a paper to be submitted elsewhere on the analysis of the fine structure of NbN by C. Athenour, T. M. Dunn, J.‐L. Féménias, and K. M. Rao.en_US
dc.identifier.citedreferenceJ. T. Hougen, Monogr. U.S. Natl. Bur. Stand. 115 (1970).en_US
dc.identifier.citedreferenceJ.‐L. Féménias, C. Athénour, and R. Stringat, Can. J. Phys. 52, 361 (1974).en_US
dc.identifier.citedreferenceJ.‐L. Féménias and C. Athénour (to be published). Can. J. Phys.en_US
dc.identifier.citedreferenceThe positions were calculated approximating the Hamiltonian for the 3Φ23Φ2 state by T0Φ+BΦ2J(J+1),T0Φ+BΦ2J(J+1), while that for the 3Δ13Δ1 was T0Δ1+BΔ1J(J+1)+Hhfs±HΛdoub.T0Δ1+BΔ1J(J+1)+Hhfs±HΛdoub. These approximations are sufficient for a study of the five first lines in each substate.en_US
dc.identifier.citedreferenceThe theoretical densities are given in the Appendix and, see also, Ref. 25.en_US
dc.identifier.citedreferenceL. Brewer and D. W. Green, High Temp. Sci. 1, 26 (1969).en_US
dc.identifier.citedreferenceThe experimental densities are of the form d  =  α logIt+β′d=αlogIt+β′ where t is the exposure time and I is the intensity, proportional to the Boltzman factor which depends upon J and on the intensity factor f, calculated in the Appendix. The Boltzman factor is almost constant over the range of our study and we may then write d  =  α logf+β.d=αlogf+β. To take the response of the plate into account, the lowest intensity lines were not measured. Their positions are indicated by ••. For the other lines, the bar height is proportional to logf.en_US
dc.identifier.citedreferenceK. D. Carlson, E. Ludenã, and C. Moser, J. Chem. Phys. 43, 2408 (1965).en_US
dc.identifier.citedreferenceK. F. Freed, J. Chem. Phys. 45, 1714 (1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.