Show simple item record

A numerical study of breaking waves

dc.contributor.authorSong, Chiyoonen_US
dc.contributor.authorSirviente, Ana I.en_US
dc.date.accessioned2010-05-06T20:31:44Z
dc.date.available2010-05-06T20:31:44Z
dc.date.issued2004-07en_US
dc.identifier.citationSong, Chiyoon; Sirviente, Ana I. (2004). "A numerical study of breaking waves." Physics of Fluids 16(7): 2649-2667. <http://hdl.handle.net/2027.42/69389>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69389
dc.description.abstractThis numerical study explores the physical processes involved in breaking waves. The two-dimensional, incompressible, unsteady Navier–Stokes equations are solved in sufficiently refined grids to capture viscous and capillary effects. The immiscible interface, characterized by a jump in density and viscosity, is embedded in the domain and a hybrid front tracking/capturing method is used to characterize the moving interface of this multiphase flow. A parametric study is conducted to assess the role of surface tension, Reynolds number, density, and viscosity on the breaking process, as well as their role in the vorticity redistribution and energy dissipation beneath the surface. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent528825 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA numerical study of breaking wavesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Naval Architecture and Marine Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2145en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69389/2/PHFLE6-16-7-2649-1.pdf
dc.identifier.doi10.1063/1.1738417en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceM. L. Banner and D. H. Peregrine, “Wave breaking in deep water,” Annu. Rev. Fluid Mech. ARVFA325, 373 (1993).en_US
dc.identifier.citedreferenceJ. H. Duncan, “An experimental investigation of breaking waves produced by a towed hydrofoil,” Proc. R. Soc. London, Ser. A PRLAAZ377, 331 (1981).en_US
dc.identifier.citedreferenceW. K. Melville, “Wave modulation and breakdown,” J. Fluid Mech. JFLSA7128, 489 (1983).en_US
dc.identifier.citedreferenceW. K. Melville, “The instability and breaking of deep-water waves,” J. Fluid Mech. JFLSA7115, 165 (1982).en_US
dc.identifier.citedreferenceM. Y. Su, M. Bergin, P. Marler, and R. Myrick, “Experiments on nonlinear instabilities and evolution of steep gravity-wave trains,” J. Fluid Mech. JFLSA7124, 45 (1982).en_US
dc.identifier.citedreferenceS. E. Ramberg, M. E. Barber, and O. M. Griffin, “Laboratory studies of steep and breaking deep water waves in a convergent channel,” NRL Report No. 5610 (1985).en_US
dc.identifier.citedreferenceN. Ebuchi, H. Kawamura, and Y. Toba, “Fine structure of laboratory wind-wave surfaces studied using an optical method,” Boundary-Layer Meteorol. BLMEBR39, 133 (1987).en_US
dc.identifier.citedreferenceW. K. Melville and R. J. Rapp, “The surface velocity field in steep breaking waves,” J. Fluid Mech. JFLSA7189, 1 (1988).en_US
dc.identifier.citedreferenceS. P. Kjeldson and D. Myrhaug, “Kinematics and dynamics of breaking waves,” Ships in Rough Seas, Part IV (Norwegian Hydrodynamic Laboratories, Trondheim, Norway, 1978).en_US
dc.identifier.citedreferenceP. Bonmarin and Ramamonjiarsoa, “Deformation to breaking of deep water gravity waters,” Exp. Fluids EXFLDU3, 11 (1985).en_US
dc.identifier.citedreferenceP. Bonmarin, “Geometric properties of deep-water breaking waves,” J. Fluid Mech. JFLSA7209, 405 (1989).en_US
dc.identifier.citedreferenceR. J. Rapp and W. K. Melville, “Laboratory measurements of deep-water breaking waves,” Philos. Trans. R. Soc. London, Ser. A PTRMAD331, 735 (1990).en_US
dc.identifier.citedreferenceD. J. Skyner, “A comparison of numerical predictions and experimental measurements of the internal kinematics of a deep-water plunging wave,” in Water Wave Kinematics, edited by A. Torum and O. T. Gudmestad (Kluwer, Berlin, 1996), p. 491.en_US
dc.identifier.citedreferenceM. Perlin, J.-H. He, and L. P. Bernal, “An experimental study of deep water plunging breakers,” Phys. Fluids PHFLE68, 2365 (1996).en_US
dc.identifier.citedreferenceA. H. Schooley, “Profiles of wind-created water waves in the capillary-gravity transition region,” J. Mar. Res. JMMRAO16, 100 (1958).en_US
dc.identifier.citedreferenceK. Okuda, “Internal flow structure of short wind waves. Part I. On the internal vorticity structure,” J. Oceanogr. Soc. Jpn. NKGKB438, 28 (1982).en_US
dc.identifier.citedreferenceJ. C. Lin and D. Rockwell, “Evolution of a quasi-steady breaking wave,” J. Fluid Mech. JFLSA7302, 29 (1978).en_US
dc.identifier.citedreferenceJ. H. Duncan, V. Philomin, M. Behers, and J. Kimmel, “The formation of spilling breaking,” Phys. Fluids PHFLE66, S2 (1994).en_US
dc.identifier.citedreferenceJ. H. Duncan, V. Philomin, M. Behers, and J. Kimmel, “The formation of spilling breaking water wave,” Phys. Fluids PHFLE66, 2558 (1994).en_US
dc.identifier.citedreferenceJ. H. Duncan, H. Qiao, V. Philomin, and A. Wenz, “Gentle spilling breakers: crest profile evolution,” J. Fluid Mech. JFLSA7379, 191 (1999).en_US
dc.identifier.citedreferenceH. Qiao and J. H. Duncan, “Gentle spilling breakers: Crest flow-field evolution,” J. Fluid Mech. JFLSA7439, 57 (2001).en_US
dc.identifier.citedreferenceM. S. Longuet-Higgins, “Progress toward understanding how waves break,” 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, 1996.en_US
dc.identifier.citedreferenceM. S. Longuet-Higgins and E. D. Cocklet, “The deformation of steep surface waves on water. I: A numerical method for computation,” Proc. R. Soc. London, Ser. A PRLAAZ350, 1 (1976).en_US
dc.identifier.citedreferenceJ. W. Dold and D. H. Peregrine, “An efficient boundary-integral method for steep unsteady water waves,” Numerical Methods for Fluid Dynamics, edited by K. W. Morton and M. J. Baines (Oxford University, Oxford, 1986).en_US
dc.identifier.citedreferenceD. G. Dommermuth, D. K. P. Yue, W. M. Lin, R. J. Rapp, E. S. Chan, and W. K. Melville, “Deep-water plunging breakers: A comparison between potential theory and experiments breaking waves,” J. Fluid Mech. JFLSA7189, 432 (1988).en_US
dc.identifier.citedreferenceS. Grilli and I. A. Svendsen, “Computation of nonlinear wave kinematics during propagation and runup on a slope,” Water Wave Kinematics, edited by A. Torum and O. T. Gudmestad (Kluwer, Berlin, 1990), p. 387.en_US
dc.identifier.citedreferenceD. J. Skyner, C. Gray, and C. A. Greated, “A comparison of time-stepping numerical predictions with whole-field measurement in breaking waves,” J. Fluid Mech. JFLSA7315, 51 (1990).en_US
dc.identifier.citedreferenceM. P. Tulin, “Breaking of ocean waves and downshifting,” in Waves and Nonlinear Processes in Hydrodynamics, edited by J. Gure, B. Gjevik, and J. E. Weber (Dordrecht, Netherlands, 1996), p. 177.en_US
dc.identifier.citedreferenceH. D. Ceniceros and T. Y. Hou, “Dynamic generation of capillary waves,” Phys. Fluids PHFLE611, 1042 (1999).en_US
dc.identifier.citedreferenceM. S. Longuet-Higgins, “Capillary rollers and bores,” J. Fluid Mech. JFLSA7240, 659 (1992).en_US
dc.identifier.citedreferenceM. S. Longuet-Higgins, “Shear instability in spilling breakers,” Proc. R. Soc. London, Ser. A PRLAAZ446, 309 (1994).en_US
dc.identifier.citedreferenceR. C. Y. Mui and D. G. Dommermuth, “The vortical structure of parasitic capillary waves,” J. Fluids Eng. JFEGA4117, 355 (1995).en_US
dc.identifier.citedreferenceH. D. Ceniceros, “The effects of surfactants on the formation and evaluation of capillary waves,” Phys. Fluids PHFLE615, 245 (2003).en_US
dc.identifier.citedreferenceJ. J. Monagham, P. J. Bicknell, and R. J. Humble, “Volcanos, tsunamis and the demise of the minoans,” Physica D PDNPDT77, 217 (1994).en_US
dc.identifier.citedreferenceG. Chen, C. Kharif, S. Zaleski, and J. Li, “Two-dimensional Navier–Stokes simulation of breaking waves,” Phys. Fluids PHFLE611, 1 (1999).en_US
dc.identifier.citedreferenceA. Iafrati and E. F. Campana, “Direct numerical simulation of surface tension dominated and non-dominated breaking waves,” 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, 2002.en_US
dc.identifier.citedreferenceF. H. Harlow and J. D. Shannon, “The splash of a liquid drop,” J. Appl. Phys. JAPIAU38, 10 (1967).en_US
dc.identifier.citedreferenceF. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Phys. Fluids PFLDAS8, 2182 (1965).en_US
dc.identifier.citedreferenceA. J. Chorin, “Numerical solution of the Navier–Stokes equation,” Math. Comput. MCMPAF22, 745 (1968).en_US
dc.identifier.citedreferenceR. Teman, “Approximate solution of Navier–Stokes equations by a fractionary step method 1,” Arch. Ration. Mech. Anal. AVRMAW32, 135 (1969).en_US
dc.identifier.citedreferenceW. Tauber, S. O. Unverdi, and G. Tryggvason, “The nonlinear behavior a sheared immiscible fluid interface,” Phys. Fluids PHFLE614, 2871 (2002).en_US
dc.identifier.citedreferenceJ. Adams, “MUDPACK: Multigrid Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. AMHCBQ34, 13 (1989).en_US
dc.identifier.citedreferenceR. Scadovelli and S. Zaleski, “Direct numerical simulation of free-surface and interfacial flow,” Annu. Rev. Fluid Mech. ARVFA331, 567 (1999).en_US
dc.identifier.citedreferenceJ. Glimm, “Nonlinear and stochastic phenomena—The grand challenge for partial differential equations,” SIAM Rev. SIREAD33, 626 (1991).en_US
dc.identifier.citedreferenceC. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys. JCTPAH39, 201 (1981).en_US
dc.identifier.citedreferenceM. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys. JCTPAH114, 1469 (1994).en_US
dc.identifier.citedreferenceM. Vogt and K.-J. Kang, “A level technique for solving 2-D free surface flow,” 12th Workshop on Water Waves and Floating Bodies, Marseilles, 1997.en_US
dc.identifier.citedreferenceM. Vogt, “A comparison between moving grid and a level set technique for solving 2-D free surface flows,” ASME Fluids Engineering Summer Meeting, Vancouver, 1997.en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, incompressible, multi-fluid flows,” J. Comput. Phys. JCTPAH100, 1 (1992).en_US
dc.identifier.citedreferenceC. S. Peskin, “Numerical analysis of blood flow in heart,” J. Comput. Phys. JCTPAH25, 220 (1977).en_US
dc.identifier.citedreferenceG. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, “Front-tracking method for the computations of multiphase flow,” J. Comput. Phys. JCTPAH169, 708 (2001).en_US
dc.identifier.citedreferenceA. Esmaeeli and G. Tryggvason, “Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays,” J. Fluid Mech. JFLSA7377, 313 (1998); “Direct numerical simulations of bubbly flows. Part 2, Moderate Reynolds number arrays,” 385, 325 (1999).en_US
dc.identifier.citedreferenceJ. Han and G. Tryggvason, “Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force,” Phys. Fuids PHFLE611, 3650 (1999); “Secondary breakup of axisymmetric liquid drops. II. Impulsive acceleration,” 13, 1554 (2001).en_US
dc.identifier.citedreferenceM. S. Longuet-Higgins and E. D. Cocklet, “The deformation of steep surface waves on water. II: Growth of normal-mode instabilities,” Proc. R. Soc. London, Ser. A PRLAAZ364, 1 (1978).en_US
dc.identifier.citedreferenceM. Tanaka, “The stability of steep gravity-waves. 2,” J. Fluid Mech. JFLSA7156, 281 (1985).en_US
dc.identifier.citedreferenceW. J. Jillians, “The superharmonic instability of Stokes waves in deep water,” J. Fluid Mech. JFLSA7204, 563 (1989).en_US
dc.identifier.citedreferenceR. G. Dean and R. A. Darlymple, Water Wave Mechanics for Engineers and Scientists, 2nd ed. (World Scientific, Singapore, 1991).en_US
dc.identifier.citedreferenceS. V. Patankar, C. H. Liu, and E. M. Sparrow, “Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area,” Trans. ASME, Ser. K JBENDY99, 180 (1977).en_US
dc.identifier.citedreferenceY. Yang and G. Tryggvason, “Dissipation of energy by finite-amplitude surface waves,” Comput. Fluids CPFLBI27, 829 (1998).en_US
dc.identifier.citedreferenceJ. H. Duncan and A. A. Dimas, “Surface ripples due to steady breaking waves,” J. Fluid Mech. JFLSA7329, 309 (1996).en_US
dc.identifier.citedreferenceJ. D. Fenton, “A fifth-order Stokes theory for steady waves,” J. Waterw., Port, Coastal, Ocean Eng. JWPED5111, 216 (1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.