Show simple item record

Conduction band spectra in self-assembled InAs/GaAs dots: A comparison of effective mass and an eight-band approach

dc.contributor.authorJiang, Hongtaoen_US
dc.contributor.authorSingh, Jaspriten_US
dc.date.accessioned2010-05-06T20:38:02Z
dc.date.available2010-05-06T20:38:02Z
dc.date.issued1997-12-01en_US
dc.identifier.citationJiang, Hongtao; Singh, Jasprit (1997). "Conduction band spectra in self-assembled InAs/GaAs dots: A comparison of effective mass and an eight-band approach." Applied Physics Letters 71(22): 3239-3241. <http://hdl.handle.net/2027.42/69458>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69458
dc.description.abstractStrained epitaxy has been shown to produce high quality InAs/GaAs quantum dot structures by single step epitaxy. While effective mass-based approaches have been used for quantum structures, the nature of the strain and quantum confinement in self-assembled dots is such that this is not a good approximation. In this letter, we use an eight-band k⋅pk⋅p formalism to find the electronic spectra in InAs/GaAs dots. The eight-band model shows that, in agreement with experiments, there are indeed several bound states in the conduction band well. Our results show that the simpler effective mass approaches cannot be used to quantitatively examine the physics of intersubband devices based on self-assembled quantum dots. Intersubband optical matrix elements and Coulomb blockade energy are also calculated in this letter. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent66742 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleConduction band spectra in self-assembled InAs/GaAs dots: A comparison of effective mass and an eight-band approachen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69458/2/APPLAB-71-22-3239-1.pdf
dc.identifier.doi10.1063/1.120302en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceM. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, and Zh. I. Alfenov, Phys. Rev. Lett. PRLTAO74, 4043 (1995).en_US
dc.identifier.citedreferenceF. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, J. Appl. Phys. JAPIAU80, 4019 (1996).en_US
dc.identifier.citedreferenceK. H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, and P. M. Petroff, Phys. Rev. B PRBMDO54, 11346 (1996).en_US
dc.identifier.citedreferenceM. Grundmann, N. N. Ledentsov, O. Stier, D. Bimberg, V. M. Ustinov, P. S. Kopev, and Zh. I. Alferov, Appl. Phys. Lett. APPLAB68, 979 (1996); M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B PRBMDO52, 11969 (1995).en_US
dc.identifier.citedreferenceJ.-Y. Marzin and G. Bastard, Solid State Commun. SSCOA492, 437 (1994).en_US
dc.identifier.citedreferenceM. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B PRBMDO54, R2300 (1996).en_US
dc.identifier.citedreferenceP. N. Keating, Phys. Rev. PHRVAO145, 637 (1966).en_US
dc.identifier.citedreferenceR. M. Martin, Phys. Rev. B PRBMDO1, 4005 (1969).en_US
dc.identifier.citedreferenceF. H. Pollak, Semicond. Semimet. 21MZA432, 17 (1990); J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill, New York, 1993).en_US
dc.identifier.citedreferenceG. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).en_US
dc.identifier.citedreferenceT. L. Li and K. J. Kuhn, J. Comp. Physiol. JRCPA3110, 292 (1994).en_US
dc.identifier.citedreferenceR. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, 1997 (submitted to SIAM Publications).en_US
dc.identifier.citedreferenceR. Q. Yang, Phys. Rev. B PRBMDO52, 11958 (1995).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.