Show simple item record

Variation of refractive index in strained InxGa1−xAs‐GaAs heterostructures

dc.contributor.authorDas, Utpalen_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.date.accessioned2010-05-06T20:43:41Z
dc.date.available2010-05-06T20:43:41Z
dc.date.issued1985-07-01en_US
dc.identifier.citationDas, Utpal; Bhattacharya, Pallab K. (1985). "Variation of refractive index in strained InxGa1−xAs‐GaAs heterostructures." Journal of Applied Physics 58(1): 341-344. <http://hdl.handle.net/2027.42/69520>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69520
dc.description.abstractInxGa1−xAs‐GaAs heterostructures and strained‐layer superlattices can be used as optical waveguides. For such applications it is important to know explicitly the refractive index variation with mismatch strain and with alloying in the ternary layer. Starting from the Kramers‐Kronig integral dispersion relations, we have developed a model from which the refractive index change in the ternary layer of InxGa1−xAs‐GaAs heterojunctions can be calculated. The results are presented and discussed. The expected changes in a superlattice have been qualitatively predicted.en_US
dc.format.extent3102 bytes
dc.format.extent458194 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleVariation of refractive index in strained InxGa1−xAs‐GaAs heterostructuresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69520/2/JAPIAU-58-1-341-1.pdf
dc.identifier.doi10.1063/1.335682en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceP. A. Kirkby, P. R. Selway, and L. D. Westbrook, J. Appl. Phys. 50, 4567 (1979).en_US
dc.identifier.citedreferenceS. Adachi and K. Oe, J. Appl. Phys. 54, 6620 (1983).en_US
dc.identifier.citedreferenceS. Adachi, J. Appl. Phys. 53, 5863 (1982).en_US
dc.identifier.citedreferenceG. A. Olsen, T. Z. Zamerowski, R. T. Smith, and E. P. Benin, J. Electron. Mater. 9, 977 (1980).en_US
dc.identifier.citedreferenceB. Broberg and S. Lindgren, J. Appl. Phys. 55, 3381 (1984).en_US
dc.identifier.citedreferenceJ. P. van der Ziel and A. C. Gossard, J. Appl. Phys. 48, 3018 (1977).en_US
dc.identifier.citedreferenceH. Sakaki, J. Yoshino, Y. Sekiguchi, and K. Sakai, Electron. Lett. 20, 321 (1984).en_US
dc.identifier.citedreferenceY. Suzuki and H. Okamoto, J. Electron. Mater. 12, 397 (1983).en_US
dc.identifier.citedreferenceM. J. Ludowise, W. T. Dietze, C. R. Lewis, M. D. Camras, N. Holohyak, B. K. Fuller, and M. A. Nixon, Appl. Phys. Lett. 42, 487 (1983); W. D. Laidig, Y. F. Lin, and P. J. Caldwell, J. Appl. Phys. 57, 33 (1985).en_US
dc.identifier.citedreferenceM. J. Ludowise, W. T. Dietze, R. Boettcher, and N. Kaminar, Appl. Phys. Lett. 43, 468 (1983).en_US
dc.identifier.citedreferenceS. M. Bedair, T. Katsuyama, M. Timmons, and M. A. Tischler, IEEE Electron Dev. Lett. EDL‐5, 45 (1984).en_US
dc.identifier.citedreferenceG. C. Osbourn, J. Vac. Sci. Technol. B 2, 176 (1984).en_US
dc.identifier.citedreferenceH. Kato, M. Nakayama, S. Chika, and N. Sano, Solid State Commun. 52, 559 (1984).en_US
dc.identifier.citedreferenceR. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, New York, 1982), p. 37.en_US
dc.identifier.citedreferenceJ. Y. Marzin and E. V. K. Rao, Appl. Phys. Lett. 43, 560 (1983).en_US
dc.identifier.citedreferenceH. Asai and K. Oe, J. Appl. Phys. 54, 2052 (1983).en_US
dc.identifier.citedreferenceG. C. Osbourn, J. Appl. Phys. 53, 1586 (1982).en_US
dc.identifier.citedreferenceW. A. Jesser and D. K. Wildsorf, Phys. Status Solidi 19, 95 (1967).en_US
dc.identifier.citedreferenceG. C. Osbourn, J. Vac. Sci. Technol. B 1, 379 (1983).en_US
dc.identifier.citedreferenceH. Mathieu, P. Merle, E. L. Ameziane, B. Archilla, J. Camassel, and G. Poiblaud, Phys. Rev. B 19, 2209 (1979).en_US
dc.identifier.citedreferenceM. Chandrasekhar and F. H. Pollak, Phys. Rev. B 15, 2127 (1977).en_US
dc.identifier.citedreferenceD. L. Rode, Phys. Rev. B 2, 1012 (1970).en_US
dc.identifier.citedreferenceP. Y. Yu, M. Cardona, and F. H. Pollak, Phys. Rev. B 3, 340 (1971).en_US
dc.identifier.citedreferenceM. Neuberger, Handbook of Electronic Materials, Vol. 2 III‐V Semiconducting Compounds (IFI∕Plenum, New York, 1971).en_US
dc.identifier.citedreferenceY. Itoh, S. Adachi, and C. Hamaguchi, Phys. Status Solidi B 93, 381 (1979).en_US
dc.identifier.citedreferenceM. Cardona and F. H. Pollak, in The Physics of Opto‐Electronic Materials, edited by W. A. Albers (Plenum, New York, 1971), pp. 91–95.en_US
dc.identifier.citedreferenceC. H. Higginbotham, M. Cardona, and F. H. Pollak, Phys. Rev. 198, 821 (1969).en_US
dc.identifier.citedreferenceH. C. Casey, Jr., D. D. Sell, and M. B. Panish, Appl. Phys. Lett. 24, 63 (1974).en_US
dc.identifier.citedreferenceW. D. Laidig, C. K. Peng, and Y. F. Lin, J. Vac. Sci. Technol. B 2, 181 (1974).en_US
dc.identifier.citedreferenceJ. P. Leburton and K. Hess, J. Vac. Sci. Technol. B 1, 416 (1983).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.