Show simple item record

An interacting segment model of molecular electric tensor properties: Theory and application to electric dipole moments of the halogenated methanes

dc.contributor.authorMiller, C. K.en_US
dc.contributor.authorOrr, B. J.en_US
dc.contributor.authorWard, J. F.en_US
dc.date.accessioned2010-05-06T20:44:05Z
dc.date.available2010-05-06T20:44:05Z
dc.date.issued1977-09-01en_US
dc.identifier.citationMiller, C. K.; Orr, B. J.; Ward, J. F. (1977). "An interacting segment model of molecular electric tensor properties: Theory and application to electric dipole moments of the halogenated methanes." The Journal of Chemical Physics 67(5): 2109-2118. <http://hdl.handle.net/2027.42/69524>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69524
dc.description.abstractA model is developed to describe trends in molecular properties such as electric dipole moment, polarizabilities, and hyperpolarizabilities for series of structurally related molecules. The model takes account of intramolecular electrostatic interactions, which give rise to induced electric moments in the various segments of the molecule. For this purpose each molecular segment is ascribed a set of ’’bare’’ electric tensor properties, which describe the hypothetical situation where intersegment interactions are absent, and a corresponding set of ’’dressed’’ properties, which include the effects of the intramolecular field. Any overall molecular electric tensor property is then obtained by summing the appropriate dressed segment properties. After theoretical development the model is used to fit electric dipole moment data for the 12 halogenated methanes CXnY4−n(X,Y=H,F,Cl;n=0–4), for which a simple bond additivity model is known to be inadequate and which severely test any theory of induced dipole moments. The results of such an analysis are highly satisfactory and indicate that the model should also give an adequate description of higher‐order electric tensor properties.en_US
dc.format.extent3102 bytes
dc.format.extent793861 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAn interacting segment model of molecular electric tensor properties: Theory and application to electric dipole moments of the halogenated methanesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumRandall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69524/2/JCPSA6-67-5-2109-1.pdf
dc.identifier.doi10.1063/1.435097en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceFor a recent review of much of the relevant literature see M. P. Bogaard and B. J. Orr, International Review of Science. Physical Chemistry, edited by A. D. Buckingham (Butterworths, London, 1975), Ser. 2, Vol. 2, p. 149.en_US
dc.identifier.citedreferenceB. J. Orr and J. F. Ward, Mol. Phys. 20, 513 (1971).en_US
dc.identifier.citedreferenceJ. W. Smith, Electric Dipole Moments (Butterworths, London, 1955).en_US
dc.identifier.citedreferenceA. I. Vogel et al. in a series of 52 papers published in J. Chem. Soc. between 1934 and 1966. The last paper in the series is J. Chem. Soc. B 1966, 1080.en_US
dc.identifier.citedreferenceR. J. W. LeFèvre, Advances in Physical Organic Chemistry, edited by V. Gold (Academic, New York, 1965), Vol. 3, P. 1.en_US
dc.identifier.citedreferenceA. D. Buckingham and B. J. Orr, Q. Rev. Chem. Soc. (London) 21, 195 (1967). Note that errors in Eqs. (9)‐(11) have been corrected in Ref. 7.en_US
dc.identifier.citedreferenceA. D. Buckingham and B. J. Orr, Trans. Faraday Soc. 65, 673 (1969).en_US
dc.identifier.citedreferenceR. S. Finn and J. F. Ward, J. Chem. Phys. 60, 454 (1974).en_US
dc.identifier.citedreferenceJ. F. Ward and I. J. Bigio, Phys. Rev. A 11, 60 (1975).en_US
dc.identifier.citedreferenceB. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975), and references cited therein.en_US
dc.identifier.citedreferenceK. S. Pitzer, Advances in Chemical Physics, edited by I. Prigogine (Interscience, New York, 1959), Vol. 2, p. 59.en_US
dc.identifier.citedreferenceR. L. Rowell and R. S. Stein, J. Chem. Phys. 47, 2985 (1967).en_US
dc.identifier.citedreferenceE. M. Mortensen, J. Chem. Phys. 49, 3732 (1968).en_US
dc.identifier.citedreferenceJ. Applequist, J. R. Carl, and K.‐K. Fung, J. Am. Chem. Soc. 94, 2952 (1972).en_US
dc.identifier.citedreferenceA. D. Buckingham and H. Sutter, J. Chem. Phys. 64, 364 (1976).en_US
dc.identifier.citedreferenceR. H. Pritchard and C. W. Kern, J. Am. Chem. Soc. 91, 1631 (1969).en_US
dc.identifier.citedreferenceM. S. Gordon and W. England, J. Am. Chem. Soc. 94, 5168 (1972).en_US
dc.identifier.citedreferenceA. T. Amos and R. J. Crispin, J. Chem. Phys. 63, 1890 (1975); Mol. Phys. 31, 147 (1976).en_US
dc.identifier.citedreferenceB. F. Levine (private communication).en_US
dc.identifier.citedreferenceC. P. Smyth and K. B. McAlpine, J. Chem. Phys. 1, 190 (1933).en_US
dc.identifier.citedreferenceR. P. Smith, T. Ree, J. L. Magee, and H. Eyring, J. Am. Chem. Soc. 73, 2263 (1951).en_US
dc.identifier.citedreferenceSee also the Appendix.en_US
dc.identifier.citedreferenceLandolt‐Börnstein, Zahlenwerte und Funktionen, Neue Serie, Gruppe II, Atom‐und Molekularphysik (Springer, Berlin, 1974), Ser. 6.en_US
dc.identifier.citedreferenceR. D. Nelson, D. R. Lide, and A. A. Maryott, Selected Values of Electric Dipole Moments for Molecules in the Gas Phase (U.S. Department of Commerce, Washington, 1967).en_US
dc.identifier.citedreferenceK. L. Ramaswamy, Proc. Indian Acad. Sci. Sect. A 4, 675 (1936).en_US
dc.identifier.citedreferenceH. E. Watson and K. L. Ramaswamy, Proc. R. Soc. (London) Ser. A 156, 144 (1936).en_US
dc.identifier.citedreferenceK. L. Ramaswamy, Proc. Indian Acad. Sci. Sect. A 2, 630 (1935).en_US
dc.identifier.citedreferenceH. Sutter and R. H. Cole, J. Chem. Phys. 52, 132 (1970).en_US
dc.identifier.citedreferenceT. K. Bose, J. S. Sochanski, and R. H. Cole, J. Chem. Phys. 57, 3592 (1972).en_US
dc.identifier.citedreferenceLandolt‐Börnstein, Zahlenwerte und Funktionen (Springer, Berlin, 1951), Ser. I, p. 515.en_US
dc.identifier.citedreferenceN. J. Bridge and A. D. Buckingham, Proc. R. Soc. (London) Ser. A 295, 334 (1966).en_US
dc.identifier.citedreferenceC. K. Miller and J. F. Ward, Phys. Rev. A (to be published).en_US
dc.identifier.citedreferenceC. K. Miller, B. J. Orr, and J. F. Ward (to be published).en_US
dc.identifier.citedreferenceK. R. Sundberg, J. Chem. Phys. 66, 114, 1475 (1977).en_US
dc.identifier.citedreferenceJ. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).en_US
dc.identifier.citedreferenceWe use conventional Cartesian tensor notation, in which Greek suffixes denote X, Y, Z components and in which summation over those components is understood when the same Greek suffix is repeated.en_US
dc.identifier.citedreferenceSee, for example, A. D. Buckingham, Discuss. Faraday Soc. 40, 232 (1965); Advances in Chemical Physics, edited by J. O. Hirschfelder (Interscience, New York, 1967), Vol. 12, p. 107.en_US
dc.identifier.citedreferenceWe use the shorthand notation ⟨T⋅⟩i⟨T⋅X̂⟩i to represent summations of the form Σj ≠ iTijj,Σj≠iTijX̂j, where j is a dummy suffix. The notation ⟨T⋅⟩is⟨T⋅X̂⟩is specifies a product of s such terms, each involving summation over a distinct dummy suffix.en_US
dc.identifier.citedreferenceIt should be noted that we define our interaction tensors TijTij with opposite sign to that adpoted by Applequist et al.14 Our matrix MijMij is otherwise identical to their matrix Bij.Bij.en_US
dc.identifier.citedreferenceL. Silberstein, Philos. Mag. 33, 92, 215, 521 (1917).en_US
dc.identifier.citedreferenceH. A. Stuart, Molekülstruktur (Springer, Berlin, 1934), p. 184.en_US
dc.identifier.citedreferenceW. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).en_US
dc.identifier.citedreferenceL. E. Sutton et al., Tables of Interatomic Distances and Configuration in Molecules and Ions (Chemical Society, London, 1958); Interatomic Distances Supplement (Chemical Society, London, 1965).en_US
dc.identifier.citedreferenceP. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw‐Hill, New York, 1969), pp. 243, 188.en_US
dc.identifier.citedreferenceA recent review is given by W. B. Person and D. Steele, Molecular Spectroscopy edited by R. F. Barrow, D. A. Long, and D. J. Millen (Chemical Society, London, 1974), Vol. 2, p. 357.en_US
dc.identifier.citedreferenceD. F. Hornig and D. C. McKean, J. Phys. Chem. 59, 1133 (1955).en_US
dc.identifier.citedreferenceD. Steele, Q. Rev. Chem. Soc. 18, 21 (1964).en_US
dc.identifier.citedreferenceI. M. Mills, Mol. Phys. 1, 107 (1958); R. E. Hiller and J. W. Straley, J. Mol. Spectrosc. 5, 24 (1960).en_US
dc.identifier.citedreferenceD. van der Hart and W. H. Flygare, Mol. Phys. 18, 77 (1970); W. H. Flygare and R. C. Benson, Mol. Phys. 20, 225 (1971).en_US
dc.identifier.citedreferenceIn Refs. 1 and 2 K(0;0,ω,−ω)K(0;0,ω,−ω) is erroneously given as ⅜;38; the correct value is .32.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.