Show simple item record

Pseudopotential SCF–MO studies of hypervalent compounds. IV. Structure, vibrational assignments, and intramolecular forces in IF7

dc.contributor.authorBartell, Lawrence S.en_US
dc.contributor.authorRothman, Michael J.en_US
dc.contributor.authorGavezzotti, Angeloen_US
dc.date.accessioned2010-05-06T20:45:28Z
dc.date.available2010-05-06T20:45:28Z
dc.date.issued1982-04-15en_US
dc.identifier.citationBartell, Lawrence S.; Rothman, Michael J.; Gavezzotti, Angelo (1982). "Pseudopotential SCF–MO studies of hypervalent compounds. IV. Structure, vibrational assignments, and intramolecular forces in IF7." The Journal of Chemical Physics 76(8): 4136-4143. <http://hdl.handle.net/2027.42/69539>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69539
dc.description.abstractEwig’s pseudopotential procedure, applied with a small basis set, yielded a minimum energy structure with D5h symmetry instead of the deformed pseudorotating structure proposed to account for electron diffraction and electric beam deflection experiments. Nevertheless, calculated restoring forces for e2 displacements were so feeble that a higher quality calculation making the postulated e2 deformation spontaneous is not at all precluded. Otherwise, calculated molecular characteristics of IF7 closely resembled those deduced from the diffraction and beam experiments, from extended Hückel calculations, and from the simple valence shell electron pair repulsion theory in a repelling points‐on‐a‐sphere (POS) variant. Axial bonds were shorter by 0.05 Å than equatorial bonds, and calculated mean bond lengths exceeded observed ones by only 0.03 Å. Furthermore, the calculated anharmonic coupling of e′1 polar displacements with large‐amplitude e2 puckering vibrations closely reproduced the coupling inferred from experiment. This favorable correspondance between theory and interpretation of experiment was found not to extend to vibrational assignments, however. Instead, the pseudopotential calculations were in suprisingly close agreement with the simple POS and EHT models predicting that equatorial in‐plane bends are far stiffer, due to the close lateral contacts, than the other bending modes. None of the six published vibrational assignments had been interpreted on this basis. An alternative assignment was found which is reasonably consistent with both the calculated force field and the observed infrared and Raman spectra. A similar assignment seems appropriate for ReF7. Calculations with and without d orbitals on iodine furnished evidence that the role of d orbitals in hypervalent compounds is less important than it is often considered to be. Neither the second‐order Jahn–Teller softening of the e2 force constants nor the covalent binding of seven fluorines to iodine was found to depend crucially upon valence d orbitals.en_US
dc.format.extent3102 bytes
dc.format.extent713578 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePseudopotential SCF–MO studies of hypervalent compounds. IV. Structure, vibrational assignments, and intramolecular forces in IF7en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69539/2/JCPSA6-76-8-4136-1.pdf
dc.identifier.doi10.1063/1.443490en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceO. Ruff and R. Keim, Z. Anorg. Chem. 201, 245 (1931); American Institute of Physics Handbook, 2nd ed., edited by M. W. Zemanski (McGraw‐Hill, New York, 1963), Sec. 4, pp. 4–222.en_US
dc.identifier.citedreferenceN. V. Sidgwick, The Chemical Elements and their Compounds (Oxford University, London, 1950), Vol. II, Chap. VIIB.en_US
dc.identifier.citedreferenceR. D. Burbank and F. N. Bensey, Jr., J. Chem. Phys. 27, 981 (1957).en_US
dc.identifier.citedreferenceJ. Donohue, J. Chem. Phys. 30, 1618 (1959).en_US
dc.identifier.citedreferenceR. D. Burbank, J. Chem. Phys. 30, 1619 (1959).en_US
dc.identifier.citedreferenceL. L. Lohr, Jr. and W. N. Lipscomb, J. Chem. Phys. 36, 2225 (1962).en_US
dc.identifier.citedreferenceR. D. Burbank, Acta Crystallogr. 15, 1207 (1962).en_US
dc.identifier.citedreferenceJ. Donohue, Acta Crystallogr. 18, 1018 (1965).en_US
dc.identifier.citedreferenceN. V. Sidgwick and H. M. Powell, Proc. R. Soc. London, Ser. A 176, 153 (1940).en_US
dc.identifier.citedreferenceR. J. Gillespie and R. S. Nyholm, Q. Rev. (London) 4, 339 (1957); R. J. Gillespie, Molecular Geometry (Van Nostrand, London, 1972).en_US
dc.identifier.citedreferenceL. S. Bartell and V. Plato, J. Am. Chem. Soc. 95, 3097 (1973).en_US
dc.identifier.citedreferenceL. S. Bartell, Kémiai Közlemények 43, 497 (1975).en_US
dc.identifier.citedreferenceL. S. Bartell, Inorg. Chem. 9, 1594 (1970).en_US
dc.identifier.citedreferenceH. B. Thompson and L. S. Bartell, Inorg. Chem. 7, 488 (1968).en_US
dc.identifier.citedreferenceT. A. Claxton and G. C. Benson, Can. J. Chem. 44, 157 (1966), and work cited therein.en_US
dc.identifier.citedreferenceW. J. Adams, H. B. Thompson, and L. S. Bartell, J. Chem. Phys. 53, 4040 (1970).en_US
dc.identifier.citedreferenceEarlier, less complete work is reported by H. B. Thompson and L. S. Bartell, Trans. Am. Cryst. Soc. 2, 190 (1966); R. E. LaVilla and S. H. Bauer, J. Chem. Phys. 33, 182 (1960).en_US
dc.identifier.citedreferenceE. W. Kaiser, J. S. Muenter, W. Klemperer, and W. E. Falconer, J. Chem. Phys. 53, 53 (1970).en_US
dc.identifier.citedreferenceL. S. Bartell, J. Chem. Phys. 63, 3750 (1975); B. R. Miller and L. S. Bartell, 72, 800 (1980).en_US
dc.identifier.citedreferenceR. C. Lord, M. A. Lynch, W. C. Schumb, and E. J. Slowinski, J. Am. Chem. Soc. 72, 522 (1950).en_US
dc.identifier.citedreferenceG. Nagarajan, Curr. Sci. (India) 30, 413 (1961).en_US
dc.identifier.citedreferenceR. K. Khanna, J. Mol. Spectrosc. 8, 134 (1962).en_US
dc.identifier.citedreferenceL. S. Arighi, Ph.D. thesis, University of Wisconsin, 1965.en_US
dc.identifier.citedreferenceH. H. Claassen, E. L. Gasner, and H. Selig, J. Chem. Phys. 49, 1803 (1968).en_US
dc.identifier.citedreferenceK. Ramaswamy and P. Muthusubramanian, J. Mol. Struct. 6, 205 (1970).en_US
dc.identifier.citedreferenceE. Wendling and S. Mahmoudi, Bull. Soc. Chim. 1972, 33.en_US
dc.identifier.citedreferenceH. H. Eysel and K. Seppelt, J. Chem. Phys. 56, 5081 (1972).en_US
dc.identifier.citedreferenceS. Mohan, Acta Cient. Indica 1, 31 (1978).en_US
dc.identifier.citedreferenceL. S. Bernstein, Ph.D. thesis, University of California, 1974. Note that the number 4 in the numerator of the second term, lefthand side of Eq. [20(a)], p. 97, should be deleted.en_US
dc.identifier.citedreferenceC. S. Ewig and J. R. Van Wazer, J. Chem. Phys. 63, 4035 (1975); C. S. Ewig, R. Osman, and J. R. Van Wazer, 66, 3557 (1977).en_US
dc.identifier.citedreferenceM. J. Rothman, L. S. Bartell, C. S. Ewig, and J. R. Van Wazer, J. Comp. Chem. 1, 64 (1980).en_US
dc.identifier.citedreferenceL. S. Bartell, M. J. Rothman, C. S. Ewig, and J. R. Van Wazer, J. Chem. Phys. 73, 367 (1980).en_US
dc.identifier.citedreferenceM. J. Rothman, L. S. Bartell, C. S. Ewig, and J. R. Van Wazer, J. Chem. Phys. 73, 375 (1980).en_US
dc.identifier.citedreferenceL. S. Bartell and A. Gavezzotti, Theochem. (in press).en_US
dc.identifier.citedreferenceR. Hoffmann, J. Chem. Phys. 39, 1397 (1963).en_US
dc.identifier.citedreferenceE. Clementl, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).en_US
dc.identifier.citedreferenceC. Roetti and E. Clementi, J. Chem. Phys. 60, 4725 (1974).en_US
dc.identifier.citedreferenceVia a versatile program due to R. L. Hilderbrandt, Comput. Chem. 1, 179 (1979).en_US
dc.identifier.citedreferenceL. S. Bartell (unpublished research, 1972).en_US
dc.identifier.citedreferenceH. Basch, A. Viste, and H. B. Gray, Theor. Chim. Acta 3, 458 (1965).en_US
dc.identifier.citedreferenceR. F. W. Bader, Mol. Phys. 3, 137 (1960).en_US
dc.identifier.citedreferenceL. S. Bartell, J. Chem. Educ. 45, 754 (1968).en_US
dc.identifier.citedreferenceR. G. Pearson, J. Am. Chem. Soc. 91, 4947 (1969).en_US
dc.identifier.citedreferenceE. J. Jacob and L. S. Bartell, J. Chem. Phys. 53, 2231 (1970).en_US
dc.identifier.citedreferenceFor example, the field of Ref. 22 which is diagonal in bending displacements.en_US
dc.identifier.citedreferenceR. M. Badger, J. Chem. Phys. 2, 128 (1934); 3, 710 (1935).en_US
dc.identifier.citedreferenceH. C. Lonquet‐Higgins, Proc. R. Soc. London Ser. A 235, 537 (1956); U. Opik and M. H. L. Pryce, 238, 425 (1957).en_US
dc.identifier.citedreferenceSee J. Burdett, Chem. Soc. Rev. 7, 507 (1978).en_US
dc.identifier.citedreferenceL. S. Bartell, J. Chem. Phys. 46, 4530 (1967).en_US
dc.identifier.citedreferenceL. S. Bartell and R. M. Gavin, J. Chem. Phys. 48, 2466 (1968).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.