Show simple item record

Phenomenological theory of tunnel emitter transit time oscillators for the terahertz range

dc.contributor.authorGribnikov, Z. S.en_US
dc.contributor.authorVagidov, N. Z.en_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T20:49:54Z
dc.date.available2010-05-06T20:49:54Z
dc.date.issued2004-02-01en_US
dc.identifier.citationGribnikov, Z. S.; Vagidov, N. Z.; Haddad, G. I. (2004). "Phenomenological theory of tunnel emitter transit time oscillators for the terahertz range." Journal of Applied Physics 95(3): 1489-1496. <http://hdl.handle.net/2027.42/69587>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69587
dc.description.abstractWe develop an analytic theory based on an earlier model of the admittance of a ballistic transit time diode terahertz oscillator with tunnel emission of electrons into a transit space. The focus of this work is on the actual case when electrons are injected with high enough energy to move from the start with maximal (saturated) ballistic velocity (∼1×108(∼1×108 to 2×108 cm/s).2×108 cm/s). On the one hand, such diodes have maximal oscillation frequencies and, on the other hand, a simple analytic theory describes them and allows us to avoid a cumbersome numerical procedure, which characterizes the general case. Such a description is analogous to the description of oscillatory diodes with diffusive transport and saturated drift velocity. We have also considered a special case when a small part of the ballistic electrons crossing the transit space scatter into a diffusive subsystem with a small drift velocity. The appearance of such slow-drifting electrons substantially increases space charge in the transit space and influences the static JV-characteristic but the high-frequency admittance is almost invariable. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent369805 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePhenomenological theory of tunnel emitter transit time oscillators for the terahertz rangeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumInstitute for Quantum Sciences, Michigan State University, East Lansing, Michigan 48824en_US
dc.contributor.affiliationumDepartment of EECS, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of EECS, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of EE, State University of New York, Buffalo, New York 14260en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69587/2/JAPIAU-95-3-1489-1.pdf
dc.identifier.doi10.1063/1.1635645en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. Nishizawa and Y. Watanabe, Sci. Rep. Res. Inst. Tohoku Univ. A SRTAA610, 91 (1958).en_US
dc.identifier.citedreferenceV. K. Aladinskii, Fiz. Tekh. Poluprovodn. (S.-Peterburg) FTPPA42, 617 (1968)[Semiconductors SPSEAX2, 517 (1968)].en_US
dc.identifier.citedreferenceS. M. Sze, Physics of Semiconductor Devices (Wiley, NY, 1981).en_US
dc.identifier.citedreferenceJ. Nishizawa, K. Motoya, and Y. Okuno, IEEE Trans. Microwave Theory Tech. IETMAB26, 1029 (1978).en_US
dc.identifier.citedreferenceH. Eisele and G. I. Haddad, IEEE Trans. Microwave Theory Tech. IETMAB46, 739 (1998).en_US
dc.identifier.citedreferenceP. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, IEEE Trans. Electron Devices IETDAI50, 867 (2003).en_US
dc.identifier.citedreferenceT. Bauer, M. Rosh, M. Claassen, and W. Harth, Electron. Lett. ELLEAK30, 1319 (1994).en_US
dc.identifier.citedreferenceZ. S. Gribnikov, N. Z. Vagidov, V. V. Mitin, and G. I. Haddad, J. Appl. Phys. JAPIAU93, 5435 (2003).en_US
dc.identifier.citedreferenceZ. S. Gribnikov, N. Z. Vagidov, V. V. Mitin, and G. I. Haddad, Physica E (Amsterdam) PELNFM19, 89 (2003).en_US
dc.identifier.citedreferenceR. Landauer and Th. Martin, Rev. Mod. Phys. RMPHAT66, 217 (1994).en_US
dc.identifier.citedreferenceM. Büttiker and R. Landauer, Phys. Rev. Lett. PRLTAO49, 1739 (1982).en_US
dc.identifier.citedreferenceB. I. Ivlev and V. I. Mel’nikov, Zh. Eksp. Teor. Fiz. ZETFA790, 2208 (1986).[Sov. Phys. JETP SPHJAR63, 1295 (1986)].en_US
dc.identifier.citedreferenceA. Ghis, E. Constant, and B. Boittiaux, J. Appl. Phys. JAPIAU54, 214 (1983).en_US
dc.identifier.citedreferenceJ. Bude and K. Hess, J. Appl. Phys. JAPIAU72, 3554 (1992).en_US
dc.identifier.citedreferenceE. Kobayashi, Ch. Hamaguchi, T. Matsuoka, and K. Taniguchi, IEEE Trans. Electron Devices IETDAI36, 2359 (1989).en_US
dc.identifier.citedreferenceR. Teissier, D. Sicault, A. Goujon, J. l. Pelouard, F. Pardo, and F. Mollot, Appl. Phys. Lett. APPLAB75, 103 (1999).en_US
dc.identifier.citedreferenceG. Fasol, W. Hackenberg, H. P. Huges, K. Ploog, E. Bauser, and H. Kano, Phys. Rev. B PRBMDO41, 1461 (1990).en_US
dc.identifier.citedreferenceC. L. Petersen and S. A. Lyon, Phys. Rev. Lett. PRLTAO65, 760 (1990).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.