Show simple item record

Experimental assessment of Taylor’s hypothesis and its applicability to dissipation estimates in turbulent flows

dc.contributor.authorDahm, Werner J. A.en_US
dc.contributor.authorSoutherland, Kenneth B.en_US
dc.date.accessioned2010-05-06T20:52:55Z
dc.date.available2010-05-06T20:52:55Z
dc.date.issued1997-07en_US
dc.identifier.citationDahm, Werner J. A.; Southerland, Kenneth B. (1997). "Experimental assessment of Taylor’s hypothesis and its applicability to dissipation estimates in turbulent flows." Physics of Fluids 9(7): 2101-2107. <http://hdl.handle.net/2027.42/69620>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69620
dc.description.abstractResults are presented from an assessment of the applicability of Taylor’s hypothesis for approximating streamwise derivatives and obtaining dissipation estimates in turbulent flows. These are based on fully resolved measurements of a conserved scalar field ζ(x,t)ζ(x,t) throughout a four-dimensional spatio-temporal volume in a turbulent flow. The data allow simultaneous evaluation of all three components of the true gradient vector field ∇ζ(x,t)∇ζ(x,t) and the time derivative field (∂/∂t)ζ(x,t)(∂/∂t)ζ(x,t) at the small scales of a turbulent shear flow. Streamwise derivatives obtained from Taylor’s frozen flow hypothesis yield a correlation of 0.74 with the true streamwise derivative field at the present measurement location in the self-similar far field of an axisymmetric turbulent jet. Direct assessments are also presented of approximations invoking Taylor’s hypothesis to estimate energy dissipation rates in turbulent flows. The classical single-point time series approximation yields a correlation of 0.56 with the true scalar energy dissipation rate, while a mixed estimate that combines one spatial derivative and the time derivative gives a correlation of 0.72. A general analytical formulation is presented for assessing various dissipation estimates, and for determining the optimal dissipation estimate that maximizes the correlation with the true dissipation rate. The resulting optimal mixed dissipation estimate yields a correlation of 0.82 at the point of maximum turbulence intensity in a jet, and a value of 0.92 on the jet centerline. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent343396 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleExperimental assessment of Taylor’s hypothesis and its applicability to dissipation estimates in turbulent flowsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2118en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69620/2/PHFLE6-9-7-2101-1.pdf
dc.identifier.doi10.1063/1.869329en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceG. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London Ser. A 164, 476 (1938).en_US
dc.identifier.citedreferenceL. K. Su and W. J. A. Dahm, “Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. I. Assessment of errors,” Phys. Fluids 8, 1869 (1996).en_US
dc.identifier.citedreferenceL. K. Su and W. J. A. Dahm, “Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. II. Experimental results,” Phys. Fluids 8, 1883 (1996).en_US
dc.identifier.citedreferenceW. J. A. Dahm, K. B. Southerland, and K. A. Buch, “Direct, highresolution, four-dimensional measurements of the fine scale structure of Sc≫1Sc≫1 molecular mixing in turbulent flows,” Phys. Fluids A 3, 1115 (1991).en_US
dc.identifier.citedreferenceK. B. Southerland and W. J. A. Dahm, “A four-dimensional experimental study of conserved scalar mixing in turbulent flows,” Report No. 026779–12, Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI, 1994.en_US
dc.identifier.citedreferenceK. B. Southerland and W. J. A. Dahm, “A four-dimensional experimental study of conserved scalar mixing in turbulent flows,” submitted to J. Fluid Mech.en_US
dc.identifier.citedreferenceP. Vukoslavcevic, J. M. Wallace, and J.-L. Balint, “The velocity and vorticity vector fields of a turbulent boundary layer. Part I. Simultaneous measurement by hot-wire anemometry,” J. Fluid Mech. 228, 25 (1991).en_US
dc.identifier.citedreferenceA. Tsinober, E. Kit, and T. Dracos, “Experimental investigation of the field of velocity gradients in turbulent flows,” J. Fluid Mech. 242, 169 (1992).en_US
dc.identifier.citedreferenceC. C. Lin, “On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equations,” Q. J. Appl. Math. 10, 295 (1953).en_US
dc.identifier.citedreferenceI. Wygnanski and H. Fiedler, “Some measurements in the self-preserving jet,” J. Fluid Mech. 38, 577 (1969).en_US
dc.identifier.citedreferenceR. A. Antonia, N. Phan-Thien, and A. J. Chambers, “Taylor’s hypothesis and the probability density functions of temporal velocity and temperature derivatives in a turbulent flow,” J. Fluid Mech. 100, 193 (1980).en_US
dc.identifier.citedreferenceK. B. M. O. Zamam and A. K. M. F. Hussain, “Taylor hypothesis and large-scale coherent structures,” J. Fluid Mech. 112, 379 (1981).en_US
dc.identifier.citedreferenceL. W. B. Browne, R. A. Antonia, and S. Rajagopalan, “The spatial derivative of temperature in a turbulent flow and Taylor’s hypothesis,” Phys. Fluids 26, 1222 (1983).en_US
dc.identifier.citedreferenceG. Heskestad, “A generalized Taylor’s hypothesis with application for high Reynolds number turbulent shear flows,” J. Appl. Math., Dec., 735 (1965).en_US
dc.identifier.citedreferenceK. R. Sreenivasan, R. A. Antonia, and H. Q. Danh, “Temperature dissipation fluctuations in a turbulent boundary layer,” Phys. Fluids 20, 1238 (1977).en_US
dc.identifier.citedreferenceF. Anselmet and R. A. Antonia, “Joint statistics between temperature and its dissipation in a turbulent jet,” Phys. Fluids 28, 1048 (1985).en_US
dc.identifier.citedreferenceL. C. Andrews, R. L. Phillips, B. K. Shivamoggi, J. K. Beck, and M. L. Joshi, “A statistical theory for the distribution of energy dissipation in intermittent turbulence,” Phys. Fluids A 1, 999 (1989).en_US
dc.identifier.citedreferenceD. R. Dowling, “The estimated scalar dissipation rate in gas-phase turbulent jets,” Phys. Fluids A 3, 2229 (1991).en_US
dc.identifier.citedreferenceR. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part I. Onedimensional intersections,” J. Fluid Mech. 327, 35 (1996).en_US
dc.identifier.citedreferenceR. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part II. Higherdimensional intersections and nonfractal inclusions,” J. Fluid Mech. 338, 89 (1997).en_US
dc.identifier.citedreferenceR. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part III. Multifractal scaling,” J. Fluid Mech. 338, 127 (1997).en_US
dc.identifier.citedreferenceJ. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure of intense vorticity in isotropic turbulence,” J. Fluid Mech. 255, 65 (1993).en_US
dc.identifier.citedreferenceM. D. Millionshchikov, “Theory of homogeneous isotropic turbulence,” Dokl. Akad. Nauk. SSSR 22, 236 (1941).en_US
dc.identifier.citedreferenceM. D. Millionshchikov, “Theory of homogeneous isotropic turbulence,” Izv. Akad. Nauk. SSSR Ser. Georgr. Geofiz. 5, 433 (1941).en_US
dc.identifier.citedreferenceA. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (MIT Press, Cambridge, 1975), Vol. 2.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.