Show simple item record

Rotational spectrum, structure, and modeling of the HCCH–(OCS)2HCCH–(OCS)2 trimer: Observation of a polar OCS dimer fragment

dc.contributor.authorPeebles, Sean A.en_US
dc.contributor.authorKuczkowski, Robert L.en_US
dc.date.accessioned2010-05-06T21:04:17Z
dc.date.available2010-05-06T21:04:17Z
dc.date.issued1999-12-15en_US
dc.identifier.citationPeebles, Sean A.; Kuczkowski, Robert L. (1999). "Rotational spectrum, structure, and modeling of the HCCH–(OCS)2HCCH–(OCS)2 trimer: Observation of a polar OCS dimer fragment." The Journal of Chemical Physics 111(23): 10511-10519. <http://hdl.handle.net/2027.42/69741>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69741
dc.description.abstractThe rotational spectra of eight isotopomers of the HCCH–(OCS)2HCCH–(OCS)2 trimer have been assigned by pulsed nozzle, Fourier-transform microwave spectroscopy. The rotational constants and dipole moment components are consistent with a nonplanar, triangular-twisted structure of C1C1 symmetry which aligns the three monomer axes approximately 3°–27° away from perpendicular to a triangle formed by the center of HCCH and the carbons of OCS. The OCS dimer portion of the trimer has the two OCS monomers aligned in an almost parallel fashion such that the monomer dipole moments reinforce, rather than in the antiparallel arrangement observed in the well-known OCS dimer. This configuration has been obtained using a semiempirical model which employs a distributed multipole representation of the electrostatic interaction and analytical atom–atom terms to describe the dispersion and repulsion terms in the interaction potential. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent122568 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleRotational spectrum, structure, and modeling of the HCCH–(OCS)2HCCH–(OCS)2 trimer: Observation of a polar OCS dimer fragmenten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69741/2/JCPSA6-111-23-10511-1.pdf
dc.identifier.doi10.1063/1.480404en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceA. D. Buckingham and P. W. Fowler, Can. J. Chem. CJCHAG63, 2018 (1985).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Mol. Struct. JMOSB4436–437, 59 (1997).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Phys. Chem. JPCHAX103, 3884 (1999).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Phys. Chem. JPCHAX102, 8091 (1998).en_US
dc.identifier.citedreferenceA. J. Stone, The Theory of Intermolecular Forces (Clarendon, Oxford, 1996).en_US
dc.identifier.citedreferenceR. W. Randall, J. M. Wilkie, B. J. Howard, and J. S. Muenter, Mol. Phys. MOPHAM69, 839 (1990).en_US
dc.identifier.citedreferenceJ. P. Connelly, A. Bauder, A. Chisholm, and B. J. Howard, Mol. Phys. MOPHAM88, 915 (1996).en_US
dc.identifier.citedreferenceJ. M. LoBue, J. K. Rice, and S. E. Novick, Chem. Phys. Lett. CHPLBC112, 376 (1984).en_US
dc.identifier.citedreferenceR. A. Peebles and R. L. Kuczkowski, J. Phys. Chem. JPCHAX103, 6344 (1999).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, Chem. Phys. Lett. CHPLBC308, 21 (1999).en_US
dc.identifier.citedreferenceT. J. Balle and W. H. Flygare, Rev. Sci. Instrum. RSINAK52, 33 (1981).en_US
dc.identifier.citedreferenceJ.-U. Grabow, Ph.D. thesis, University of Kiel, 1992.en_US
dc.identifier.citedreferenceG. T. Fraser, R. D. Suenram, F. J. Lovas, A. S. Pine, J. T. Hougen, W. J. Lafferty, and J. S. Muenter, J. Chem. Phys. JCPSA689, 6028 (1988).en_US
dc.identifier.citedreferenceJ. S. Muenter, J. Chem. Phys. JCPSA648, 4544 (1968).en_US
dc.identifier.citedreferenceJ. K. G. Watson, J. Chem. Phys. JCPSA646, 1935 (1969).en_US
dc.identifier.citedreferenceJ. Kraitchman, Am. J. Phys. AJPIAS21, 17 (1953).en_US
dc.identifier.citedreferenceR. H. Schwendeman, in Critical Evaluation of Chemical and Physical Structural Information, edited by D. R. Lide and M. A. Paul (National Academy of Sciences, Washington D.C., 1974).en_US
dc.identifier.citedreferenceM. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Lafferty, and A. G. Maki, J. Phys. Chem. Ref. Data JPCRBU8, 619 (1979).en_US
dc.identifier.citedreferenceGAUSSIAN 98W, Revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stevanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh, Pennsylvania, 1998.en_US
dc.identifier.citedreferenceC. G. Gray and K. E. Gubbins, Theory of Molecular Fluids, Vol. 1: Fundamentals (Oxford University Press, Oxford, 1984).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, Chem. Phys. Lett. CHPLBC286, 421 (1998).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Chem. Phys. JCPSA6109, 5276 (1998).en_US
dc.identifier.citedreferenceR. A. Peebles, S. A. Peebles, and R. L. Kuczkowski, Mol. Phys. MOPHAM96, 1355 (1999).en_US
dc.identifier.citedreferenceM. J. Weida and D. J. Nesbitt, J. Chem. Phys. JCPSA6105, 10210 (1996).en_US
dc.identifier.citedreferenceR. E. Miller and L. Pedersen, J. Chem. Phys. JCPSA6108, 436 (1998).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, Chem. Phys. Lett. (in press).en_US
dc.identifier.citedreferenceA. J. Stone, A. Dullweber, M. P. Hodges, P. L. A. Popelier, and D. J. Wales, ORIENT: A program for studying interactions between molecules, Version 3.2, University of Cambridge, 1995.en_US
dc.identifier.citedreferenceCADPAC: The Cambridge Analytic Derivatives Package Issue 6, Cambridge, 1995. A suite of quantum chemistry programs developed by R. D. Amos with contributions from I. L. Alberts, J. S. Andrews, S. M. Colwell, N. C. Handy, D. Jayatilaka, P. J. Knowles, R. Kobayashi, K. E. Laidig, G. Laming, A. M. Lee, P. E. Maslen, C. W. Murray, J. E. Rice, E. D. Simandiras, A. J. Stone, M.-D. Su, and D. J. Tozer.en_US
dc.identifier.citedreferenceK. Mirsky, in The Determination of the Intermolecular Interaction Energy by Empirical Methods, edited by R. Schenk, R. Olthof-Hazenkamp, H. van Koningveld, and G. C. Bassi (Delft University Press, The Netherlands, 1978).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Chem. Phys. JCPSA6110, 6804 (1999).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Mol. Struct. JMOSB4485–486, 211 (1999).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.