Show simple item record

Characterization of carbon nanotubes produced by arc discharge: Effect of the background pressure

dc.contributor.authorWaldorff, Erik I.en_US
dc.contributor.authorWaas, Anthony M.en_US
dc.contributor.authorFriedmann, Peretz P.en_US
dc.contributor.authorKeidar, Michaelen_US
dc.date.accessioned2010-05-06T21:17:12Z
dc.date.available2010-05-06T21:17:12Z
dc.date.issued2004-03-01en_US
dc.identifier.citationWaldorff, Erik I.; Waas, Anthony M.; Friedmann, Peretz P.; Keidar, Michael (2004). "Characterization of carbon nanotubes produced by arc discharge: Effect of the background pressure." Journal of Applied Physics 95(5): 2749-2754. <http://hdl.handle.net/2027.42/69876>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69876
dc.description.abstractSingle walled carbon nanotubes (SWNT) produced by the anodic arc discharge over a range of constant background pressures of helium (100–1000 Torr) were examined under a high-resolution transmission electron microscope, and a Raman spectrometer. It was found that the average SWNT diameter is about 2 nm and fairly independent of the background pressure. Analysis of the relative purity of SWNTs samples suggests that highest SWNT relative concentration can be obtained at background pressure of about 200–300 Torr. Measured anode ablation rate increases linearly with background pressure. The model of the anodic arc discharge was developed. It was found that the predicted anode ablation rate agrees well with experiment suggesting that electron temperature in the anodic arc is about 0.5 eV. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent412819 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCharacterization of carbon nanotubes produced by arc discharge: Effect of the background pressureen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69876/2/JAPIAU-95-5-2749-1.pdf
dc.identifier.doi10.1063/1.1642737en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. Iijima, Nature (London) NATUAS354, 56 (1991).en_US
dc.identifier.citedreferenceS. Iijima and T. Ichihashi, Nature (London) NATUAS363, 603 (1993).en_US
dc.identifier.citedreferenceM. Yudasaka, F. Kokai, K. Takahashi, R. Yamada, N. Sensui, T. Ichihashi, and S. Iijima, J. Phys. Chem. B JPCBFK103, 3576 (1999).en_US
dc.identifier.citedreferenceM. Yudasaka, R. Yamada, N. Sensui, T. Wilkins, T. Ichihashi, and S. Iijima, J. Phys. Chem. B JPCBFK103, 6224 (1999).en_US
dc.identifier.citedreferenceF. Kokai, K. Takahashi, M. Yudasaka, R. Yamada, T. Ichihashi, and S. J. Iijima, J. Phys. Chem. B JPCBFK103, 4346 (1999).en_US
dc.identifier.citedreferenceC-H. Kiang, W. Goddard III, R. Beyers, J. Salem, and D. Bethune, J. Phys. Chem. JPCHAX98, 6612 (1994).en_US
dc.identifier.citedreferenceD. Bethune, C-H. Kiang, M. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) NATUAS363, 605 (1993).en_US
dc.identifier.citedreferenceS. Aoyama and T. Mieno, Jpn. J. Appl. Phys., Part 2 JAPLD838, L267 (1999).en_US
dc.identifier.citedreferenceZ. Huang, J. Xu, Z. Ren, J. Wang, M. Siegal, and P. Provencio, Appl. Phys. Lett. APPLAB73, 3845 (1998).en_US
dc.identifier.citedreferenceC. Bower, O. Zhou, W. Zhu, S. Werder, and S. Jin, Appl. Phys. Lett. APPLAB77, 2767 (2000).en_US
dc.identifier.citedreferenceH. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, and M. Yumura, Appl. Phys. Lett. APPLAB77, 79 (2000).en_US
dc.identifier.citedreferenceT. Halicioglu, Thin Solid Films THSFAP312, 11 (1998).en_US
dc.identifier.citedreferenceY. Jin and F. G. Yuan, in 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Denver, Colorado (American Institute of Aeronautics and Astronautics, Washington, DC, 2002), AIAA-2002-1430.en_US
dc.identifier.citedreferenceG. M. Odegard, T. S. Gates, K. E. Wise, C. Park, and E. J. Siochi, Compos. Sci. Technol., CSTCEH63, 1671 (2003).en_US
dc.identifier.citedreferenceR. S. Ruoff and D. C. Lorents, Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Reno, Nevada, 1995, p. 143.en_US
dc.identifier.citedreferenceM. S. Dresselhaus, M. A. Pimenta, P. C. Eklund, and G. Dresselhaus, Raman Scattering in Fullerenes and Related Carbon-Based Materials (Springer, New York, 2000), p. 314.en_US
dc.identifier.citedreferenceL. Schadler, S. Giannaris, and P. Ajayan, Appl. Phys. Lett. APPLAB73, 3842 (1998).en_US
dc.identifier.citedreferenceR. S. Ruoff, D. Qian, W. K. Liu, W. Ding, X. Chen, and D. Dikin, in 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Denver, Colorado (American Institute of Aeronautics and Astronautics, Washington DC, 2002), AIAA-2002-1522.en_US
dc.identifier.citedreferenceG. A. J. Amaratunga, M. Chhowalla, C. J. Kelly, I. Alexandrou, R. Aharonov, and R. M. Devenish, Nature (London) NATUAS383, 321 (1996).en_US
dc.identifier.citedreferenceW. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Appl. Phys. Lett. APPLAB75, 873 (1999).en_US
dc.identifier.citedreferenceM. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys. JAPIAU90, 5308 (2001).en_US
dc.identifier.citedreferenceV. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, Appl. Phys. Lett. APPLAB76, 3555 (2000).en_US
dc.identifier.citedreferenceL. Valentini, J. M. Kenny, L. Lozzy, and S. Santucci, J. Appl. Phys. JAPIAU92, 6188 (2002).en_US
dc.identifier.citedreferenceD. Zhou and L. Chow, J. Appl. Phys. JAPIAU93, 9972 (2003).en_US
dc.identifier.citedreferenceS. Iijima, P. M. Ajayan, and T. Ichihashi, Phys. Rev. Lett. PRLTAO69, 3100 (1992).en_US
dc.identifier.citedreferenceY. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T. Hayashi, Chem. Phys. Lett. CHPLBC204, 277 (1993).en_US
dc.identifier.citedreferenceK. Lozano and E. Barrera, J. Appl. Polym. Sci. JAPNAB79, 125 (2001).en_US
dc.identifier.citedreferenceP. Ajayan, L. Schadler, C. Giannaris, and A. Rubio, Adv. Mater. (Weinheim, Ger.) ADVMEW12, 750 (2000).en_US
dc.identifier.citedreferenceC. Stephan, T. Nguyen, M. Lamy de la Chapelle, S. Lefrant, C. Journet, and P. Bernier, Synth. Met. SYMEDZ108, 139 (2000).en_US
dc.identifier.citedreferenceF. Ko, S. Khan, A. Ali, Y. Gogotsi, N. Naguib, G. Yang, C. Li, H. Shimoda, O. Zhou, M. Bronikowski, R. Smalley, and P. Willis, in 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Denver, Colorado (American Institute of Aeronautics and Astronautics, Washington DC, 2002), AIAA-2002-1426.en_US
dc.identifier.citedreferenceA. Hassanien, M. Tokumoto, Y. Kumazawa, H. Katura, Y. Maniwa, S. Suzuku, and Y. Achiba, Appl. Phys. Lett. APPLAB73, 3839 (1998).en_US
dc.identifier.citedreferenceI. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, and R. H. Hauge, J. Phys. Chem. B JPCBFK105, 1157 (2001).en_US
dc.identifier.citedreferenceE. I. Waldorff, A. M. Waas, and P. P. Friedmann (unpublished).en_US
dc.identifier.citedreferenceD. Qian, W. K. Liu, R. S. Ruoff, in 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Denver, Colorado (American Institute of Aeronautics and Astronautics, Washington DC, 2002), AIAA-2002-1428.en_US
dc.identifier.citedreferenceP. Zhang, Y. Huang, P. H. Geubelle, and K. C. Hwang (unpublished).en_US
dc.identifier.citedreferenceV. M. Harik, T. S. Gates, and M. P. Nemeth, in 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Denver, Colorado (American Institute of Aeronautics and Astronautics, Washington DC, 2002) AIAA-2002-1429.en_US
dc.identifier.citedreferenceS. Govindjee and J. Sackman, Solid State Commun. SSCOA4110, 227 (1999).en_US
dc.identifier.citedreferenceM. Keidar, I. D. Boyd, and I. I. Beilis, J. Phys. D JPAPBE34, 1675 (2001).en_US
dc.identifier.citedreferenceI. I. Beilis, R. L. Boxman, and S. Goldsmith, J. Phys. D JPAPBE32, 128 (1999).en_US
dc.identifier.citedreferenceI. I. Beilis, M. Keidar, R. L. Boxman, and S. Goldsmith, Phys. Plasmas PHPAEN7, 3068 (2000).en_US
dc.identifier.citedreferenceH. Ehrich, B. Hasse, M. Mausbach, and K. G. Muller, J. Vac. Sci. Technol. A JVTAD68, 2160 (1990).en_US
dc.identifier.citedreferenceS. I. Anisimov, Sov. Phys. JETP SPHJAR27, 182 (1968).en_US
dc.identifier.citedreferenceM. Keidar, J. Fan, I. D. Boyd, and I. I. Beilis, J. Appl. Phys. JAPIAU89, 3095 (2001).en_US
dc.identifier.citedreferenceM. Keidar, I. D. Boyd, and I. I. Beilis, IEEE Trans. Plasma Sci. ITPSBD28, 376 (2000).en_US
dc.identifier.citedreferenceM. Keidar, I. D. Boyd, and I. I. Beilis, J. Propul. Power JPPOEL19, 424 (2003).en_US
dc.identifier.citedreferenceA. Lefort, M. J. Parizet, S. E. El-Fassi, and Abbaaoui, J. Phys. D JPAPBE26, 1239 (1993).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.