Show simple item record

The microwave spectrum, structure, and large amplitude motions of the methylacetylene⋅SO2 complex

dc.contributor.authorTan, Xue‐qingen_US
dc.contributor.authorXu, Li‐weien_US
dc.contributor.authorTubergen, Michael J.en_US
dc.contributor.authorKuczkowski, Robert L.en_US
dc.date.accessioned2010-05-06T21:19:48Z
dc.date.available2010-05-06T21:19:48Z
dc.date.issued1994-10-15en_US
dc.identifier.citationTan, Xue‐Qing; Xu, Li‐Wei; Tubergen, Michael J.; Kuczkowski, Robert L. (1994). "The microwave spectrum, structure, and large amplitude motions of the methylacetylene⋅SO2 complex." The Journal of Chemical Physics 101(8): 6512-6522. <http://hdl.handle.net/2027.42/69904>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69904
dc.description.abstractRotational spectra of five isotopomers of the methylacetylene⋅SO2 (MA⋅SO2) van der Waals complex have been observed with a Fourier transform microwave spectrometer. Each species showed two sets of rotational transitions, one associated with the A (m=0) and the other with the E (m=±1) methyl group internal rotation states. The rotational transitions of the isotopomers with S 16O2 and the doubly substituted S 18O2 also showed inversion splitting ranging from tens of kHz to a few MHz. This splitting was absent in the S 16O 18O isotopomers. The spectra of these species have been assigned and fit, yielding rotational constants, which allowed a complete determination of the structure of the complex. The SO2 was found to sit above the carbon–carbon triple bond, with one of the S–O bonds roughly parallel to the symmetry axis of methylacetylene. The centers‐of‐mass distance between the two monomers was determined to be 3.382(10) Å. The center frequencies of the inversion doublets (or quartets) were used in a fit of both the A and the E transitions; the barrier hindering the internal rotation of the methyl group was determined to be 62.8(5) cm−1. Based on the dependence of the inversion splitting on the transition dipole direction and isotopic substitution, the inversion motion was identified as an ‘‘in plane’’ wagging of the SO2 relative to methylacetylene. A pure inversion splitting of 3.11 MHz (free from rotation) was extracted from the A‐state spectrum of the normal species, from which an inversion barrier height of about 63 cm−1 was estimated.en_US
dc.format.extent3102 bytes
dc.format.extent1506742 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe microwave spectrum, structure, and large amplitude motions of the methylacetylene⋅SO2 complexen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69904/2/JCPSA6-101-8-6512-1.pdf
dc.identifier.doi10.1063/1.468345en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceA. M. Andrews, A. Taleb-Bendiab, M. S. LaBarge, K. W. Hillig II, and R. L. Kuczkowski, J. Chem. Phys. 93, 7030 (1990).en_US
dc.identifier.citedreferenceA. M. Andrews, K. W. Hillig II, R. L. Kuczkowski, A. C. Legon, and N. W. Howard, J. Chem. Phys. 94, 6947 (1991).en_US
dc.identifier.citedreferenceL.-W. Xu and R. L. Kuczkowski, J. Chem. Phys. 100, 15 (1994).en_US
dc.identifier.citedreferenceA. Taleb-Bendiab, K. W. HilligII, and R. L. Kuczkowski, J. Chem. Phys. 97, 2996 (1992).en_US
dc.identifier.citedreferenceA. Taleb-Bendiab, K. W. HilligII, and R. L. Kuczkowski, J. Chem. Phys. 98, 3627 (1993).en_US
dc.identifier.citedreferenceA. J. Fillery-Travis and A. C. Legon, J. Chem. Phys. 85, 3180 (1986).en_US
dc.identifier.citedreferenceT. A. Blake, D. F. Eggers, S.-H. Tseng, M. Lewerenz, R. P. Swift, R. D. Beck, R. O. Watts, and F. Lovas, J. Chem. Phys. 98, 6031 (1993).en_US
dc.identifier.citedreferenceF. J. Lovas, P. W. Fowler, Z. Kisiel, S.-H. Tseng, R. D. Beck, D. F. Eggers, T. A. Blake, and R. O. Watts, J. Chem. Phys. 100, 3415 (1994).en_US
dc.identifier.citedreferenceK. Tanaka, H. Ito, K. Harada, and T. Tanaka, J. Chem. Phys. 80, 5893 (1984).en_US
dc.identifier.citedreferenceW. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd. Ed. (Wiley-Interscience, New York, 1984).en_US
dc.identifier.citedreferenceJ. K. G. Watson, in Vibrational Spectra and Structure, edited by J. Durig (Elsevier, Amsterdam, 1977), Vol. 6.en_US
dc.identifier.citedreferenceR. H. Schwendeman, in Critical Evaluation of Chemical and Physical Structural Information, edited by D. R. Lide and M. A. Paul (National Academy of Sciences, Washington, D.C., 1974), pp. 94–115.en_US
dc.identifier.citedreferenceJ. S. Muenter, V. W. Laurie, J. Chem. Phys. 45, 855 (1966).en_US
dc.identifier.citedreferenceF. Rohart, J. Mol. Spectros. 57, 301 (1975).en_US
dc.identifier.citedreferenceG. Graner, J. Demaison, G. Wlodarczak, R. Anttila, J. J. Hillman, and D. E. Jennings, Mol. Phys. 64, 921 (1988).en_US
dc.identifier.citedreferenceA. McIllroy and D. J. Nesbitt, J. Chem. Phys. 91, 104 (1989).en_US
dc.identifier.citedreferenceSee AIP document No. PAPS JCPSA-101-6512-16 for 16 pages of tables. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, Carolyn Gehlbach, 500 Sunnyside Boulevard., Woodbury, New York 11797-2999. The price is $1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.en_US
dc.identifier.citedreferenceC. C. Costain, J. Chem. Phys. 29, 864 (1958); M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, and D. A. Ramsay, J. Phys. Chem. Ref. Data. 8, 619 (1979).en_US
dc.identifier.citedreferenceA. Bondi, J. Phys. Chem. 68, 441 (1964).en_US
dc.identifier.citedreferenceJ. T. Hougen, J. Mol. Spectros. 114, 395 (1985); L. H. Coudert and J. T. Hougen, 130, 86 (1988).en_US
dc.identifier.citedreferenceD. F. Plusquellic, X.-Q. Tan, and D. W. Pratt, J. Chem. Phys. 96, 8026 (1992).en_US
dc.identifier.citedreferenceD. D. Nelson, Jr., W. Klemperer, G. T. Fraser, F. J. Lovas, and R. D. Suenram, J. Chem. Phys. 87, 6365 (1987); J. G. Loeser, C. A. Schmuttenmaer, R. C. Cohen, M. J. Elrod, D. W. Steyert, R. J. Saykally, R. E. Bumgarner, and G. A. Blake, 91, 4727 (1992).en_US
dc.identifier.citedreferenceX-Q. Tan and D. W. Pratt, J. Chem. Phys. 100, 7061 (1994).en_US
dc.identifier.citedreferenceD. F. Eggers (private communication).en_US
dc.identifier.citedreferenceA. Held and D. W. Pratt, J. Am. Chem. Soc. 115, 9718 (1993).en_US
dc.identifier.citedreferenceA. D. Buckingham and P. W. Fowler, Can. J. Chem. 63, 2018 (1985).en_US
dc.identifier.citedreferenceL.-W. Xu, A. Taleb-Bendiab, L. Nemes, and R. L. Kuczkowski, J. Am. Chem. Soc. 115, 5723 (1993).en_US
dc.identifier.citedreferenceR. D. Amos and J. E. Rice, The Cambridge Analytic Derivatives Package, Issue 4.0 (Cambridge University Press, Cambridge, 1987).en_US
dc.identifier.citedreferenceE. J. Goodwin and A. C. Legon, J. Chem. Phys. 85, 6828 (1986).en_US
dc.identifier.citedreferenceE. B. Wilson, Jr., J. C. Decivs, and P. C. Cross, Molecular Vibrations (Dover, New York, 1955).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.