Show simple item record

Extrinsic transient diffusion in silicon

dc.contributor.authorGiles, Martin D.en_US
dc.date.accessioned2010-05-06T21:23:08Z
dc.date.available2010-05-06T21:23:08Z
dc.date.issued1991-05-27en_US
dc.identifier.citationGiles, Martin D. (1991). "Extrinsic transient diffusion in silicon." Applied Physics Letters 58(21): 2399-2401. <http://hdl.handle.net/2027.42/69940>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69940
dc.description.abstractThe effect of extrinsic background doping on the transient enhancement of dopant diffusion for an ion‐implanted dopant is investigated to gain insight into the role of point defect charge states. The transient effect is found to be greatly increased for extrinsic background doping of the same type as the implanted ion, and reduced for background doping of the opposite type. Analysis of the relative enhancements for boron and phosphorous allows the position of the donor and acceptor levels for the silicon self‐interstitial to be extracted. The results are in good agreement with earlier work based on extrinsic oxidation‐enhanced diffusion.en_US
dc.format.extent3102 bytes
dc.format.extent382522 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleExtrinsic transient diffusion in siliconen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Department of Electrical Engineering and Computer Science, Ann Arbor, Michigan 48109‐2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69940/2/APPLAB-58-21-2399-1.pdf
dc.identifier.doi10.1063/1.104883en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceD. Mathiot and J. C. Pfister, J. Appl. Phys. 55, 3518 (1984).en_US
dc.identifier.citedreferenceB. J. Mulvaney and W. B. Richardson, Appl. Phys. Lett. 51, 1439 (1987).en_US
dc.identifier.citedreferenceM. E. Law, PhD thesis, Stanford University, Stanford, CA 1988.en_US
dc.identifier.citedreferenceM. Orlowski, Appl. Phys. Lett. 53, 1323 (1988).en_US
dc.identifier.citedreferenceN. E. B. Cowern, J. Appl. Phys. 64, 4484 (1988).en_US
dc.identifier.citedreferenceF. F. Morehead and R. F. Lever, J. Appl. Phys. 66, 5349 (1989).en_US
dc.identifier.citedreferenceP. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989).en_US
dc.identifier.citedreferenceG. D. Watkins, Inst. Phys. Conf. Ser. 23, 1 (1975).en_US
dc.identifier.citedreferenceW. Frank, Inst. Phys. Conf. Ser. 23, 23 (1975).en_US
dc.identifier.citedreferenceM. D. Giles, IEEE Trans. CAD 8, 460 (1989).en_US
dc.identifier.citedreferenceM. D. Giles, J. Electrochem. Soc. 138, 1160 (1991).en_US
dc.identifier.citedreferenceM. E. Law, C. S. Rafferty, and R. W. Dutton, “New n-well fabrication techniques based on 2d process simulation” IEDM Technical Digest (IEEE, New York, 1986), pp. 518–521.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.