Show simple item record

Site‐dependent vibrational coupling of CO adsorbates on well‐defined step and terrace sites of monocrystalline platinum: Mixed‐isotope studies at Pt(335) and Pt(111) in the aqueous electrochemical environment

dc.contributor.authorKim, Chung S.en_US
dc.contributor.authorTornquist, Wade J.en_US
dc.contributor.authorKorzeniewski, Carolen_US
dc.date.accessioned2010-05-06T21:31:02Z
dc.date.available2010-05-06T21:31:02Z
dc.date.issued1994-11-15en_US
dc.identifier.citationKim, Chung S.; Tornquist, Wade J.; Korzeniewski, Carol (1994). "Site‐dependent vibrational coupling of CO adsorbates on well‐defined step and terrace sites of monocrystalline platinum: Mixed‐isotope studies at Pt(335) and Pt(111) in the aqueous electrochemical environment." The Journal of Chemical Physics 101(10): 9113-9121. <http://hdl.handle.net/2027.42/70025>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70025
dc.description.abstractInfrared spectroscopy is applied to probe qualitative structural features of the adlayers formed by CO at step sites and on terrace planes of Pt(335){Pt(S)‐[4(111)×(100)]} in the aqueous electrochemical environment. The C–O stretching vibrational features are reported for adlayers formed from 12CO/13CO isotopic mixtures over a wide range of CO surface coverages. At saturation, the predominant spectral features are associated with the vibrational modes of terrace‐CO in terminal (atop) coordination environments. The position of the 12CO and 13CO spectral features and their relative intensity are examined for several 12CO/13CO fractions, and they are shown to display the characteristics of a strongly coupled system.In comparison with corresponding mixed isotope spectra for CO at Pt(111) electrodes, intermolecular coupling for terrace‐CO on the (111) surface planes of Pt(335) is observed to be significantly stronger, reflecting the higher CO surface coverages on the edge sites and the terrace sites of the Pt(335) surface plane. At low coverages, spectral features associated with edge‐CO are discerned, and the intermolecular coupling for atop CO is weaker than for corresponding coverages of CO at Pt(111). The weak coupling at low coverages is attributed to the exclusive CO occupation at the step edges, which confines the intermolecular coupling to one dimension, in the direction along the step edges. For all coverages, values are determined for the dynamic dipole–dipole coupling parameter (Δνd) and the chemical (static–dipole) shift parameter (Δνs). Values for Δνs are generally small at all coverages. Values for Δνd are small (<8 cm−1) at low coverages, where CO forms one‐dimensional structures along the step edges, and they increase to large values (∼42 cm−1) at coverages that coincide with the growth of two‐dimensional structures on the terrace planes. The majority of measurements were made for the Pt(335) electrode at potentials in the classical double‐layer region, although dipole coupling parameters are also reported for Pt(335)/CO at potentials in the hydrogen adsorption region, where Δνd approaches zero at low coverages.en_US
dc.format.extent3102 bytes
dc.format.extent1392033 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSite‐dependent vibrational coupling of CO adsorbates on well‐defined step and terrace sites of monocrystalline platinum: Mixed‐isotope studies at Pt(335) and Pt(111) in the aqueous electrochemical environmenten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70025/2/JCPSA6-101-10-9113-1.pdf
dc.identifier.doi10.1063/1.468040en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceG. A. Somorjai, Chemistry in Two Dimensions: Surfaces (Cornell U.P., Ithaca, NY, 1981).en_US
dc.identifier.citedreferenceM. A. Henderson, A. Szabo, and J. T. Yates, Jr., J. Chem. Phys. 91, 7245 (1989).en_US
dc.identifier.citedreferenceC. S. Kim, W. J. Tornquist, and C. Korzeniewski, J. Phys. Chem. 97, 6484 (1993).en_US
dc.identifier.citedreferenceC. S. Kim, C. Korzeniewski, and W. J. Tornquist, J. Chem. Phys. 100, 628 (1994).en_US
dc.identifier.citedreferenceJ. S. Luo, R. G. Tobin, D. K. Lambert, G. B. Fisher, and C. L. DiMaggio, J. Chem. Phys. 99, 1347 (1993).en_US
dc.identifier.citedreferenceJ. Xu and J. T. Yates, Jr., J. Chem. Phys. 99, 725 (1993).en_US
dc.identifier.citedreferenceH. J. Jansch, J. Xu, and J. T. Yates, Jr., J. Chem. Phys. 99, 721 (1993).en_US
dc.identifier.citedreferenceJ. S. Luo, R. G. Tobin, D. K. Lambert, G. B. Fisher, and C. L. DiMaggio, Surf. Sci. 274, 53 (1992).en_US
dc.identifier.citedreferenceJ. Xu, P. Henriksen, and J. T. Yates, Jr., J. Chem. Phys. 97, 5250 (1992).en_US
dc.identifier.citedreferenceD. K. Lambert and R. G. Tobin, Surf. Sci. 232, 149 (1990).en_US
dc.identifier.citedreferenceJ.-S. Luo, R. G. Tobin, D. K. Lambert, F. T. Wagner, and T. E. Moylan, J. Electron Spectrosc. Relat. Phenom. 54∕55, 469 (1990).en_US
dc.identifier.citedreferenceF. M. Lelbsle, R. S. Sorbello, and R. G. Greenler, Surf. Sci. 179, 101 (1987).en_US
dc.identifier.citedreferenceB. E. Hayden, K. Kretzschmar, A. M. Bradshaw, and R. G. Greenler, Surf. Sci. 149, 394 (1985).en_US
dc.identifier.citedreferenceR. G. Greenler, K. D. Burch, K. Kretzschmar, R. Klauser, A. M. Bradshaw, and B. E. Hayden, Surf. Sci. 153, 338 (1985).en_US
dc.identifier.citedreferenceR. G. Greenler, F. M. Leibsle, and R. S. Sorbello, Phys. Rev. B 32, 8431 (1985).en_US
dc.identifier.citedreferenceR. G. Greenler, J. A. Dudek, and D. E. Beck, Surf. Sci. 145, L453 (1984).en_US
dc.identifier.citedreferenceM. J. Weaver and X. Gao, Annu. Rev. Phys. Chem. 44, 459 (1993).en_US
dc.identifier.citedreferenceS. C. Chang and M. J. Weaver, J. Phys. Chem. 95, 5391 (1991).en_US
dc.identifier.citedreferenceX. Gao, S. C. Chang, X. Jiang, A. Hamelin, and M. J. Weaver, J. Vac. Sci. Technol. A 10, 2972 (1992).en_US
dc.identifier.citedreferenceC. Korzeniewski and M. W. Severson, Spectrochim. Acta (in press).en_US
dc.identifier.citedreferenceS. C. Chang, A. Hamelin, and M. J. Weaver, J. Phys. Chem. 95, 5560 (1991).en_US
dc.identifier.citedreferenceS. C. Chang, A. Hamelin, and M. J. Weaver, Surf. Sci. 239, L543 (1990).en_US
dc.identifier.citedreferenceS. Watanabe, J. Inkai, and M. Ito, Surf. Sci. 293, 1 (1993).en_US
dc.identifier.citedreferenceB. E. Hayden, in Vibrational Spectroscopy of Molecules on Surfaces, edited by J. T. Yates, Jr., and T. E. Madey (Plenum, New York, 1987), Vol. 1, p. 267.en_US
dc.identifier.citedreferenceP. Hollins and J. Pritchard, Progr. Surf. Sci. 19, 275 (1985).en_US
dc.identifier.citedreferenceR. F. Willis, A. A. Lucas, and G. D. Mahan, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, edited by D. A. King and D. P. Woodruff (Elsevier, Amsterdam, 1983), Vol. 2, p. 59.en_US
dc.identifier.citedreferenceS. C. Chang and M. J. Weaver, J. Chem. Phys. 92, 4582 (1990).en_US
dc.identifier.citedreferenceR. M. Hammaker, S. A. Francis, and R. P. Eischens, Spectrochim. Acta 21, 1295 (1965).en_US
dc.identifier.citedreferenceA. Crossley and D. A. King, Surf. Sci. 68, 528 (1977).en_US
dc.identifier.citedreferenceA. Crossley and D. A. King, Surf. Sci. 95, 131 (1980).en_US
dc.identifier.citedreferenceC. W. Olsen and R. I. Masel, J. Vac. Sci. Technol. A 6, 792 (1988).en_US
dc.identifier.citedreferenceC. W. Olsen and R. I. Masel, Surf. Sci. 201, 444 (1988).en_US
dc.identifier.citedreferenceM. W. Severson, W. J. Tornquist, and J. Overend, J. Phys. Chem. 88, 469 (1984).en_US
dc.identifier.citedreferenceM. W. Severson, A. Russell, D. Campbell, and J. W. Russell, Langmuir 3, 202 (1987).en_US
dc.identifier.citedreferenceD. P. Woodruff, B. E. Hayden, K. Prince, and A. M. Bradshaw, Surf. Sci. 123, 397 (1982).en_US
dc.identifier.citedreferenceA. Ortega, F. M. Hoffman, and A. M. Bradshaw, Surf. Sci. 119, 79 (1982).en_US
dc.identifier.citedreferenceP. Hollins and J. Pritchard, Surf. Sci. 89, 486 (1979).en_US
dc.identifier.citedreferenceB. N. J. Persson and R. Ryberg, Phys. Rev. B 24, 6954 (1981).en_US
dc.identifier.citedreferenceD. K. Paul, T. P. Beebe, Jr., K. J. Uram, and J. T. Yates, Jr., J. Am. Chem. Soc. 114, 1949 (1992).en_US
dc.identifier.citedreferenceD. Zurawski, M. Wasberg, and A. Wieckowski, J. Phys. Chem. 94, 2076 (1990).en_US
dc.identifier.citedreferenceN. R. Avery, J. Chem. Phys. 74, 4202 (1981).en_US
dc.identifier.citedreferenceH. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. 123, 264 (1982).en_US
dc.identifier.citedreferenceS. L. Yau, X. Gao, S. C. Chang, B. C. Schardt, and M. J. Weaver, J. Am. Chem. Soc. 113, 6049 (1991).en_US
dc.identifier.citedreferenceJ. D. Roth, S.-C. Chang, and M. J. Weaver, J. Electroanal. Chem. 288, 285 (1990).en_US
dc.identifier.citedreferenceS.-C. Chang, X. Jiang, J. D. Roth, and M. J. Weaver, J. Phys. Chem. 95, 5378 (1991).en_US
dc.identifier.citedreferenceJ. D. Roth and M. J. Weaver, Langmuir 8, 1451 (1992).en_US
dc.identifier.citedreferenceX. Jian and M. J. Weaver, Surf. Sci. 275, 237 (1992).en_US
dc.identifier.citedreferenceN. Kizhakevariam, X. Jiang, and M. J. Weaver, J. Chem. Phys. 100, 6750 (1994).en_US
dc.identifier.citedreferenceR. Ryberg, Surf. Sci. 114, 627 (1982).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.