Show simple item record

The vibrational relaxation of I2I2 (X 1Σg+)(X1Σg+) in mesitylene

dc.contributor.authorLiu, H. J.en_US
dc.contributor.authorPullen, Stuart H.en_US
dc.contributor.authorWalker, Larry A.en_US
dc.contributor.authorSension, Roseanne J.en_US
dc.date.accessioned2010-05-06T21:31:30Z
dc.date.available2010-05-06T21:31:30Z
dc.date.issued1998-03-22en_US
dc.identifier.citationLiu, H. J.; Pullen, Stuart H.; Walker, Larry A.; Sension, Roseanne J. (1998). "The vibrational relaxation of I2I2 (X 1Σg+)(X1Σg+) in mesitylene." The Journal of Chemical Physics 108(12): 4992-5001. <http://hdl.handle.net/2027.42/70030>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70030
dc.description.abstractTransient absorption measurements between 400 nm and 570 nm are used to extract information on the vibrational relaxation of iodine in the complexing solvent mesitylene. The well characterized nature of the I2I2-arene complex makes it an excellent prototype for the study of relaxation processes in the presence of weak interactions. The data and analysis presented here demonstrate the rapid nonexponential vibrational relaxation of I2I2 in the interacting solvent mesitylene. The peak of the population distribution has dropped below n = 10n=10 by 11 ps and n = 7n=7 by 15.5 ps. The energy relaxation is characterized by a biexponential decay with time constants of 4.41±0.08 ps4.41±0.08ps and 20.3±0.7 ps.20.3±0.7ps. Quantitative comparisons of relaxation in a variety solvents are made by using a simple time-delay to peak absorption characterization of the relaxation. The initial 4.4 ps decay in mesitylene is significantly faster than the time scales for relaxation in noninteracting hydrocarbon solvents. The difference in the relaxation rate cannot be attributed to a change in vibrational frequency as the vibrational frequency of I2I2 has only a small dependence on the solvent. It is suggested that the vibrational relaxation of I2I2 in mesitylene through the high-lying levels is better characterized as an “intramolecular” vibrational energy redistribution process than relaxation to a solvent bath. The ultrafast vibrational relaxation occurs via the anharmonic coupling of the I–I stretching coordinate and the I-MST stretching coordinate of an I2I2-MST complex. © 1998 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent206842 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe vibrational relaxation of I2I2 (X 1Σg+)(X1Σg+) in mesityleneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70030/2/JCPSA6-108-12-4992-1.pdf
dc.identifier.doi10.1063/1.476309en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceD. J. Nesbitt and J. T. Hynes, J. Chem. Phys. JCPSA677, 2130 (1982).en_US
dc.identifier.citedreferenceA. L. Harris, M. Berg, and C. B. Harris, J. Chem. Phys. JCPSA684, 788 (1986).en_US
dc.identifier.citedreferenceJ. K. Brown, D. J. Russell, D. E. Smith, and C. B. Harris, Rev. Phys. Appl. RPHAAN22, 1787 (1987).en_US
dc.identifier.citedreferenceJ. K. Brown, C. B. Harris, and J. C. Tully, J. Chem. Phys. JCPSA689, 6687 (1988).en_US
dc.identifier.citedreferenceM. E. Paige and C. B. Harris, Chem. Phys. CMPHC2149, 37 (1990).en_US
dc.identifier.citedreferenceD. J. Russell and C. B. Harris, Chem. Phys. CMPHC2183, 325 (1994).en_US
dc.identifier.citedreferenceR. Lingle, Jr., X. Xu, S. Yu, H. Zhu, and J. B. Hopkins, J. Chem. Phys. JCPSA693, 5667 (1990).en_US
dc.identifier.citedreferenceX. Xu, S. Yu, R. Lingle, Jr., H. Zhu, and J. B. Hopkins, J. Chem. Phys. JCPSA695, 2445 (1991).en_US
dc.identifier.citedreferenceR. Zadoyan, Z. Li, P. Ashjian, C. Martens, and V. Apkarian, Chem. Phys. Lett. CHPLBC218, 504 (1994).en_US
dc.identifier.citedreferenceR. Zadoyan, Z. Li, C. Martens, and V. Apkarian, J. Chem. Phys. JCPSA6101, 6648 (1994).en_US
dc.identifier.citedreferenceU. Banin and S. Ruhman, J. Chem. Phys. JCPSA698, 4391 (1993).en_US
dc.identifier.citedreferenceU. Banin, R. Kosloff, and S. Ruhman, Chem. Phys. CMPHC2183, 289 (1994).en_US
dc.identifier.citedreferenceT. Kühne and P. Vöhringer, J. Chem. Phys. JCPSA6105, 10788 (1996).en_US
dc.identifier.citedreferenceI. Benjamin and R. M. Whitnell, Chem. Phys. Lett. CHPLBC204, 45 (1993).en_US
dc.identifier.citedreferenceA. E. Johnson, D. E. Levinger, and P. F. Barbara, J. Phys. Chem. JPCHAX96, 7841 (1992).en_US
dc.identifier.citedreferenceD. A. V. Kliner, J. C. Alfano, and P. F. Barbara, J. Chem. Phys. JCPSA698, 5375 (1993).en_US
dc.identifier.citedreferenceP. K. Walhout, J. C. Alfano, K. A. M. Thakur, and P. F. Barbara, J. Phys. Chem. JPCHAX99, 7568 (1995).en_US
dc.identifier.citedreferenceI. Benjamin, P. Barbara, B. Gertner, and J. Hynes, J. Phys. Chem. JPCHAX99, 7557 (1995).en_US
dc.identifier.citedreferenceH. Rosen, Y. R. Shen, and F. Stenman, Mol. Phys. MOPHAM22, 33 (1971).en_US
dc.identifier.citedreferenceW. Kiefer and H. J. Bernstein, J. Raman Spectrosc. JRSPAF1, 417 (1973).en_US
dc.identifier.citedreferenceJ. Put, G. Maes, P. Huyskens, and Th. Zeegers-Huyskens, Spectrochim. Acta A SAMCAS37, 699 (1981).en_US
dc.identifier.citedreferenceB. Cohen and S. Weiss, J. Chem. Phys. JCPSA672, 6804 (1980); 74, 3635 (1981).en_US
dc.identifier.citedreferenceR. Sension and H. L. Strauss, J. Chem. Phys. JCPSA686, 6665 (1987).en_US
dc.identifier.citedreferenceM. Besnard, N. Del Campo, R. M. Cavagnat, and J. Lascombe, Chem. Phys. Lett. CHPLBC162, 132 (1989).en_US
dc.identifier.citedreferenceC. A. Langhoff, K. Gnadig, and K. B. Eisenthal, Chem. Phys. CMPHC246, 117 (1980).en_US
dc.identifier.citedreferenceE. F. Hilinski and P. M. Rentzepis, J. Am. Chem. Soc. JACSAT107, 5907 (1985).en_US
dc.identifier.citedreferenceE. Lenderink, K. Dupen, and D. A. Wiersma, Chem. Phys. Lett. CHPLBC211, 503 (1993).en_US
dc.identifier.citedreferenceL. A. Walker II, S. Pullen, B. Donovan, and R. J. Sension, Chem. Phys. Lett. CHPLBC242, 177 (1995).en_US
dc.identifier.citedreferenceS. Pullen, L. A. Walker II, and R. J. Sension, J. Chem. Phys. JCPSA6103, 7877 (1995).en_US
dc.identifier.citedreferenceE. Lenderink, K. Duppen, F. P. X. Everdij, J. Mavri, R. Torre, and D. A. Wiersma, J. Phys. Chem. JPCHAX100, 7822 (1996).en_US
dc.identifier.citedreferenceS. J. Rand and R. L. Strong, J. Am. Chem. Soc. JACSAT82, 5 (1960).en_US
dc.identifier.citedreferenceR. L. Strong, S. J. Rand, and J. A. Britt, J. Am. Chem. Soc. JACSAT82, 5053 (1960).en_US
dc.identifier.citedreferenceR. L. Strong and J. Perano, J. Am. Chem. Soc. JACSAT83, 2843 (1961).en_US
dc.identifier.citedreferenceK. D. Raner, J. Lusztyk, and K. U. Ingold, J. Phys. Chem. JPCHAX93, 564 (1989).en_US
dc.identifier.citedreferenceG. DeBoer, J. W. Burnett, and M. A. Young, Chem. Phys. Lett. CHPLBC259, 368 (1996).en_US
dc.identifier.citedreferenceG. DeBoer, J. W. Burnett, A. Fujimoto, and M. A. Young, J. Phys. Chem. JPCHAX100, 14882 (1996).en_US
dc.identifier.citedreferenceY. Danten, B. Guillot, and Y. Guissani, J. Chem. Phys. JCPSA696, 3782 (1992).en_US
dc.identifier.citedreferenceR. J. Sension and H. L. Strauss, J. Chem. Phys. JCPSA685, 3791 (1986).en_US
dc.identifier.citedreferenceC. M. Chen and W. E. Wentworth, J. Phys. Chem. JPCHAX89, 4099 (1985).en_US
dc.identifier.citedreferenceE. M. Voight, J. Phys. Chem. JPCHAX72, 3300 (1968).en_US
dc.identifier.citedreferenceT. D. McLean, B. B. Ratcliff, J. Z. Pastalan, and K. K. Innes, J. Quant. Spectrosc. Radiat. Transf. JQSRAE42, 445 (1989).en_US
dc.identifier.citedreferenceJ. C. Schug and M. C. Dyson, J. Chem. Phys. JCPSA658, 297 (1973).en_US
dc.identifier.citedreferenceE. Kochanski and J. Prissette, Nouv. J. Chim. 4, 509 (1980).en_US
dc.identifier.citedreferenceI. Jano, Theor. Chim. Acta TCHAAM66, 341 (1985).en_US
dc.identifier.citedreferenceR. M. Keefer and L. J. Andrews, J. Am. Chem. Soc. JACSAT77, 2164 (1955).en_US
dc.identifier.citedreferenceB. B. Bhowmik and S. P. Chattopadhyay, Spectrochim. Acta A SAMCAS37, 135 (1981).en_US
dc.identifier.citedreferenceJ. A. Joens, J. Org. Chem. JOCEAH54, 1126 (1989).en_US
dc.identifier.citedreferenceV. P. Shedbalkar and S. N. Bhat,Bull. Chem. Soc. Jpn. BCSJA857, 852 (1984).en_US
dc.identifier.citedreferenceGAUSSIAN 94, Revision B. 3, M. J. Frisch et al., Gaussian, Inc., Pittsburgh, Pennsylvania, 1995.en_US
dc.identifier.citedreferenceH. McConnell, J. S. Ham, and J. R. Platt, J. Chem. Phys. JCPSA621, 66 (1953); J. McHale, A. Banerjee, and J. Simons, 69, 1406 (1978).en_US
dc.identifier.citedreferenceP. Y. Cheng, D. Zhong, and A. H. Zewail, Chem. Phys. Lett. CHPLBC242, 369 (1995).en_US
dc.identifier.citedreferenceP. Y. Cheng, D. Zhong, and A. H. Zewail, J. Chem. Phys. JCPSA6103, 5153 (1995).en_US
dc.identifier.citedreferenceNote that there are several typographical errors in Ref. 38, Sec. IV A. Equation (4.9) should read aν = {−x+s ln x+(2γ−ν)−(2γ−ν−½)ln(2γ−ν)}.aν={−x+slnx+(2γ−ν)−(2γ−ν−12)ln(2γ−ν)}. Equation (4.10) should read BνS = [ν!]1/2 exp(aν/2)LνS(x)BνS=[ν!]1/2exp(aν/2)LνS(x) and Eq. (4.12) should read ∣ν⟩ = [βs/]1/2Bνs(x).∣ν⟩=[βs/2π]1/2Bνs(x).en_US
dc.identifier.citedreferenceN. Pugliano, A. Z. Szarka, S. Gnanakaran, M. Triechel, and R. M. Hochstrasser, J. Chem. Phys. JCPSA6103, 6498 (1995).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.